Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2010, supplement № 3, Pages 67–68 (Mi pdm181)  

Mathematical Foundations of Reliability of Computing and Control Systems

On minimal edge $k$-extensions of oriented stars

M. B. Abrosimov

Saratov State University, Saratov
References:
Abstract: A graph $G^*$ is $k$-edge extension of graph $G$ if every graph obtained by removing any $k$ edges(arcs) from $G^*$ contains $G$. $k$-edge extension of graph $G$ with $n$ vertices is called minimal if among all $k$-edge extensions of graph $G$ with $n$ vertices it has the minimum possible number of edges (arcs). Oriented star is obtained from unoriented star by replacing edges with arcs. We provide the complete description of minimal $k$-edge extensions for oriented stars.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. B. Abrosimov, “On minimal edge $k$-extensions of oriented stars”, Prikl. Diskr. Mat., 2010, supplement № 3, 67–68
Citation in format AMSBIB
\Bibitem{Abr10}
\by M.~B.~Abrosimov
\paper On minimal edge $k$-extensions of oriented stars
\jour Prikl. Diskr. Mat.
\yr 2010
\pages 67--68
\issueinfo supplement № 3
\mathnet{http://mi.mathnet.ru/pdm181}
Linking options:
  • https://www.mathnet.ru/eng/pdm181
  • https://www.mathnet.ru/eng/pdm/y2010/i12/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024