|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2002, Issue 9, Pages 35–42
(Mi pa80)
|
|
|
|
О неточностях в «точных» оценках для бигломорфных выпуклых отображений
P. Liczberskia, V. V. Starkovb a Technical University of Łódź, Institute of Mathematics
b Petrozavodsk State University, Faculty of Mathematics
Abstract:
In this paper there is considered the family $K^{n}$, $n\in \mathbb{N}$ of all $f, f(0)=0, Df(0)=I$, which map biholomorphically the unit ball $\mathbb{B}^{n}$ onto convex domains in $\mathbb{C}^{n}$. Several authors generalized the well-known classical inequality $(1+|z|)^{-2}\le |f'(z)|\le (1-|z|)^{-2}, z\in \mathbb{B}^{1}$, onto $n$-dimensional case; they have also declared that their inequalities are exact. In fact, in many cases the statemements were false. The intention of the paper is to indicate such cases
Citation:
P. Liczberski, V. V. Starkov, “О неточностях в «точных» оценках для бигломорфных выпуклых отображений”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2002, no. 9, 35–42
Linking options:
https://www.mathnet.ru/eng/pa80 https://www.mathnet.ru/eng/pa/y2002/i9/p35
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 40 |
|