|
On complete Riesz–Fischer sequences in a Hilbert space
E. Zikkos Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
Abstract:
We prove that if $\{f_n\}_{n=1}^{\infty}$ is a complete Riesz–Fischer sequence in a separable Hilbert space $H$, then
$$
T:=\{f\in H\colon \sum |\langle f, f_n\rangle |^2<\infty\}
$$
is closed in $H$ if and only if $\{f_n\}_{n=1}^{\infty}$ has a biorthogonal Riesz sequence. If the latter is also complete in $H$, then $\{f_n\}_{n=1}^{\infty}$ is a Riesz basis for $H$.
Keywords:
Riesz–Fischer sequences, Bessel sequences, Riesz sequences, Riesz bases, biorthogonal sequences, completeness.
Received: 31.08.2023 Revised: 22.12.2023 Accepted: 23.12.2023
Citation:
E. Zikkos, “On complete Riesz–Fischer sequences in a Hilbert space”, Probl. Anal. Issues Anal., 13(31):1 (2024), 124–131
Linking options:
https://www.mathnet.ru/eng/pa395 https://www.mathnet.ru/eng/pa/v31/i1/p124
|
|