Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2023, Volume 12(30), Issue 1, Pages 87–95
DOI: https://doi.org/10.15393/j3.art.2023.12210
(Mi pa370)
 

On a sum involving certain arithmetic functions on Piatetski–Shapiro and Beatty sequences

T. Srichan

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
References:
Abstract: Let $c$, $\alpha$, $\beta \in \mathbb{R}$ be such that $1<c<2$, $\alpha>1$ is irrational and with bounded partial quotients, $\beta\in [0, \alpha)$. In this paper, we study asymptotic behaviour of the summations of the form $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor n^c \rfloor)}{ \lfloor n^c \rfloor}$ and $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor \alpha n+\beta \rfloor)}{\lfloor \alpha n+\beta \rfloor}$, where $f$ is the Euler totient function $\phi$, Dedekind function $\Psi$, sum-of-divisors function $\sigma$, or the alternating sum-of-divisors function $\sigma_{alt}$.
Keywords: arithmetic function, Beatty sequence, Piatetski–Shapiro sequence.
Funding agency Grant number
Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation RGNS 63-40
This work was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Grant No. RGNS 63-40.
Received: 16.08.2022
Revised: 29.09.2022
Accepted: 10.10.2022
Bibliographic databases:
Document Type: Article
UDC: 511.174, 511.35, 517.589
MSC: 11N37, 11N69
Language: English
Citation: T. Srichan, “On a sum involving certain arithmetic functions on Piatetski–Shapiro and Beatty sequences”, Probl. Anal. Issues Anal., 12(30):1 (2023), 87–95
Citation in format AMSBIB
\Bibitem{Sri23}
\by T.~Srichan
\paper On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
\jour Probl. Anal. Issues Anal.
\yr 2023
\vol 12(30)
\issue 1
\pages 87--95
\mathnet{http://mi.mathnet.ru/pa370}
\crossref{https://doi.org/10.15393/j3.art.2023.12210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582294}
Linking options:
  • https://www.mathnet.ru/eng/pa370
  • https://www.mathnet.ru/eng/pa/v30/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :36
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024