|
On a sum involving certain arithmetic functions on Piatetski–Shapiro and Beatty sequences
T. Srichan Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok 10900, Thailand
Abstract:
Let $c$, $\alpha$, $\beta \in \mathbb{R}$ be such that $1<c<2$, $\alpha>1$ is irrational and with bounded partial quotients, $\beta\in [0, \alpha)$. In this paper, we study asymptotic behaviour of the summations of the form $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor n^c \rfloor)}{ \lfloor n^c \rfloor}$ and $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor \alpha n+\beta \rfloor)}{\lfloor \alpha n+\beta \rfloor}$, where $f$ is the Euler totient function $\phi$, Dedekind function $\Psi$, sum-of-divisors function $\sigma$, or the alternating sum-of-divisors function $\sigma_{alt}$.
Keywords:
arithmetic function, Beatty sequence, Piatetski–Shapiro sequence.
Received: 16.08.2022 Revised: 29.09.2022 Accepted: 10.10.2022
Citation:
T. Srichan, “On a sum involving certain arithmetic functions on Piatetski–Shapiro and Beatty sequences”, Probl. Anal. Issues Anal., 12(30):1 (2023), 87–95
Linking options:
https://www.mathnet.ru/eng/pa370 https://www.mathnet.ru/eng/pa/v30/i1/p87
|
Statistics & downloads: |
Abstract page: | 57 | Full-text PDF : | 36 | References: | 15 |
|