Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2023, Volume 12(30), Issue 1, Pages 3–24
DOI: https://doi.org/10.15393/j3.art.2023.12250
(Mi pa365)
 

This article is cited in 2 scientific papers (total in 2 papers)

Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight

R. Akgün

Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, Cagis Yerleskesi, Altieylul, 10145, Balikesir, Türkiye
References:
Abstract: Using a transference result, several inequalities of approximation by entire functions of exponential type in $\mathcal{C}(\mathbf{R})$, the class of bounded uniformly continuous functions defined on $\mathbf{R}:=\left(-\infty, +\infty \right)$, are extended to the Lebesgue spaces $L^{p}\left( \mathbf{\varrho }dx\right) $ $1\leq p<\infty $ with Muckenhoupt weight $\mathbf{\varrho }$. This gives us a different proof of Jackson type direct theorems and Bernstein-Timan type inverse estimates in $L^{p}\left( \mathbf{\varrho }dx\right) $. Results also cover the case $p=1$.
Keywords: Lebesgue spaces, Muckenhoupt weight, entire functions of exponential type, one-sided Steklov operator, best approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud-type inequality, K-functional.
Funding agency Grant number
Balıkesir Üniversitesi 2019/61
Author was supported by Balikesir University Scientific Research Project 2019/61.
Received: 29.08.2022
Revised: 09.12.2022
Accepted: 16.12.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518, 517.982.256
Language: English
Citation: R. Akgün, “Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight”, Probl. Anal. Issues Anal., 12(30):1 (2023), 3–24
Citation in format AMSBIB
\Bibitem{Akg23}
\by R.~Akg\"un
\paper Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight
\jour Probl. Anal. Issues Anal.
\yr 2023
\vol 12(30)
\issue 1
\pages 3--24
\mathnet{http://mi.mathnet.ru/pa365}
\crossref{https://doi.org/10.15393/j3.art.2023.12250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582289}
Linking options:
  • https://www.mathnet.ru/eng/pa365
  • https://www.mathnet.ru/eng/pa/v30/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :53
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024