Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2022, Volume 11(29), Issue 3, Pages 125–142
DOI: https://doi.org/10.15393/j3.art.2022.12270
(Mi pa364)
 

Tangent approximation by solutions of the convolution equation

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, 24 Universitetskaya str., Donetsk 283001
References:
Abstract: The article for the first time studies the approximation of a function together with its derivatives on the real line by solutions of a multidimensional convolution equation of the form
$$g\ast T=0,$$
where $T$ is a given compactly supported radial distribution other than a constant multiplied by the Dirac delta function at zero. The following analogue of the well-known Carleman's theorem on tangent approximation by entire functions is obtained: if $f\in C^k(\mathbb{R})$ for some $k\in\mathbb{Z}_+$ and for any $\nu\in\{0, \ldots, k\}$ there is a finite limit
\begin{equation*} \displaystyle \underset{t \to +0 }\lim \left(\frac{d}{dt}\right)^{\nu}f(\mathrm{ln}t), \end{equation*}
then for an arbitrary positive continuous function $\varepsilon(t)$ on $\mathbb{R}$ there exists an entire function $\Phi\colon\mathbb{C}^n\to \mathbb{C}$, such that $\Phi\big |_{\mathbb{R}^n}\ast T=0$ and
\begin{equation*} \left|f^{(\nu)}(t)-\left(\frac{\partial}{\partial x_1}\right)^{\nu}\Phi(t, 0, \ldots, 0)\right|<\varepsilon(e^t) \end{equation*}
for all $t\in\mathbb{R}$, $\nu\in\{0, \ldots, k\}$ (Theorem 1). It is shown that when approximating a function on subsets of the real line that do not contain a neighborhood of the point $-\infty$, the condition for the existence of a limit in Theorem 1 can be omitted. In addition, the method of proving Theorem 1 allows one to obtain new results that are of interest for the theory of convolution equations of the indicated type. These are results about the growth of solutions (Corollary 3), on the distribution of values (Theorem 2), and also on the solvability of the interpolation problem for solutions of the convolution equation (Corollary 4).
Keywords: convolution equation, mean periodicity, Carleman's approximation theorem.
Received: 23.02.2022
Revised: 19.07.2022
Accepted: 20.07.2022
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A30, 42A75, 42A85
Language: English
Citation: V. V. Volchkov, Vit. V. Volchkov, “Tangent approximation by solutions of the convolution equation”, Probl. Anal. Issues Anal., 11(29):3 (2022), 125–142
Citation in format AMSBIB
\Bibitem{VolVol22}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper Tangent approximation by solutions of the convolution equation
\jour Probl. Anal. Issues Anal.
\yr 2022
\vol 11(29)
\issue 3
\pages 125--142
\mathnet{http://mi.mathnet.ru/pa364}
\crossref{https://doi.org/10.15393/j3.art.2022.12270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4507777}
Linking options:
  • https://www.mathnet.ru/eng/pa364
  • https://www.mathnet.ru/eng/pa/v29/i3/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :26
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024