Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2022, Volume 11(29), Issue 3, Pages 30–44
DOI: https://doi.org/10.15393/j3.art.2022.12370
(Mi pa358)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stability-preserving perturbation of the maximal terms of Dirichlet series

A. M. Gaisina, N. N. Aitkuzhinab

a Institute of Mathematics UFRC RAS, 112 Chernyshevskii st., Ufa 450008, Russia
b Bashkir State University, 32 Zaki Validi st., Ufa 450076, Russia
Full-text PDF (588 kB) Citations (1)
References:
Abstract: We study stability of the maximal term of the Dirichlet series with positive exponents, the sum of which is an entire function. This problem is of interest, because the Leont'ev formulas for coefficients calculated using a biorthogonal system of functions play the key role in obtaining asymptotic estimates for entire Dirichlet series on various continua going to infinity (for example, curves). This fact naturally leads to the need to study the behavior of the logarithm of the maximum term also for the Hadamard composition of the corresponding Dirichlet series. For the wide class of entire Dirichlet series determined by a convex growth majorant, we establish a criterion for the equivalence of the logarithms of the moduli of the original series and a modified Dirichlet series outside some exceptional set.
Keywords: Dirichlet series, Hadamard composition, stability of the maximal term, Borel–Nevanlinna lemma, convex function.
Funding agency Grant number
Russian Science Foundation 21-11-00168
This work supported by the Russian Foundation grant №21–11–00168.
Received: 12.02.2022
Revised: 13.09.2022
Accepted: 15.09.2022
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 30D40
Language: English
Citation: A. M. Gaisin, N. N. Aitkuzhina, “Stability-preserving perturbation of the maximal terms of Dirichlet series”, Probl. Anal. Issues Anal., 11(29):3 (2022), 30–44
Citation in format AMSBIB
\Bibitem{GaiAit22}
\by A.~M.~Gaisin, N.~N.~Aitkuzhina
\paper Stability-preserving perturbation of the maximal terms of Dirichlet series
\jour Probl. Anal. Issues Anal.
\yr 2022
\vol 11(29)
\issue 3
\pages 30--44
\mathnet{http://mi.mathnet.ru/pa358}
\crossref{https://doi.org/10.15393/j3.art.2022.12370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4507771}
Linking options:
  • https://www.mathnet.ru/eng/pa358
  • https://www.mathnet.ru/eng/pa/v29/i3/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :21
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024