Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2022, Volume 11(29), Issue 1, Pages 133–144
DOI: https://doi.org/10.15393/j3.art.2022.10351
(Mi pa347)
 

This article is cited in 6 scientific papers (total in 6 papers)

Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials

S. R. Swamya, S. Yalçınb

a RV College of Engineering, Bengaluru - 560 059, Karnataka, India
b Bursa Uludag University, 16059, Bursa, Turkey
References:
Abstract: The main goal of the paper is to initiate and explore two sets of regular and bi-univalent (or bi-Schlicht) functions in $\mathfrak{D} =\{z\in\mathbb{C}:|z| <1\}$ linked with Gegenbauer polynomials. We investigate certain coefficient bounds for functions in these families. Continuing the study on the initial coefficients of these families, we obtain the functional of Fekete-Szegö for each of the two families. Furthermore, we present few interesting observations of the results investigated.
Keywords: Fekete-Szegö, functional, regular function, bi-univalent function, Gegenbauer polynomials.
Received: 31.05.2021
Revised: 16.10.2021
Accepted: 21.10.2021
Bibliographic databases:
Document Type: Article
UDC: 517.54, 517.58
MSC: 30C45, 33C45, 11B39
Language: English
Citation: S. R. Swamy, S. Yalç{\i}n, “Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials”, Probl. Anal. Issues Anal., 11(29):1 (2022), 133–144
Citation in format AMSBIB
\Bibitem{SwaYal22}
\by S.~R.~Swamy, S.~Yal{\c c}{\i}n
\paper Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
\jour Probl. Anal. Issues Anal.
\yr 2022
\vol 11(29)
\issue 1
\pages 133--144
\mathnet{http://mi.mathnet.ru/pa347}
\crossref{https://doi.org/10.15393/j3.art.2022.10351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4396960}
Linking options:
  • https://www.mathnet.ru/eng/pa347
  • https://www.mathnet.ru/eng/pa/v29/i1/p133
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :60
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024