Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2021, Volume 10(28), Issue 2, Pages 67–78
DOI: https://doi.org/10.15393/j3.art.2021.9970
(Mi pa325)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the homotopy classification of positively homogeneous functions of three variables

E. Mukhamadieva, A. N. Naimovb

a Vologda State University, 15 Lenina st., Vologda 160000, Russia
b Vologda Institute of Law and Economics of the Federal Penitentiary Service, 2 Shchetinina st., Vologda 160002, Russia
References:
Abstract: In this paper, we study the problem of homotopy classification of the set $\mathcal{F}$ of positively homogeneous smooth functions in three variables whose gradients do not vanish at nonzero points. This problem is of interest in the study of periodic and bounded solutions of systems of ordinary differential equations with the main positive homogeneous nonlinearity. The subset $\mathcal{F}_0\subset\mathcal{F}$ is presented and for any function $g(x)\in\mathcal{F}_0$, a formula for calculating the rotation $\gamma (\nabla g)$ of its gradient $\nabla g(x)$ on the boundary of the unit ball $|x| <1$ is derived. It is proved that any function from $\mathcal{F}$ is homotopic to some function from $\mathcal{F}_0$.
Keywords: positively homogeneous function, homotopy, homotopy classification, vector field rotation.
Received: 04.03.2021
Revised: 13.05.2021
Accepted: 18.05.2021
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: 26A21, 54C50
Language: English
Citation: E. Mukhamadiev, A. N. Naimov, “On the homotopy classification of positively homogeneous functions of three variables”, Probl. Anal. Issues Anal., 10(28):2 (2021), 67–78
Citation in format AMSBIB
\Bibitem{MuhNai21}
\by E.~Mukhamadiev, A.~N.~Naimov
\paper On the homotopy classification of positively homogeneous functions of three variables
\jour Probl. Anal. Issues Anal.
\yr 2021
\vol 10(28)
\issue 2
\pages 67--78
\mathnet{http://mi.mathnet.ru/pa325}
\crossref{https://doi.org/10.15393/j3.art.2021.9970}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000661490100006}
\elib{https://elibrary.ru/item.asp?id=46863094}
Linking options:
  • https://www.mathnet.ru/eng/pa325
  • https://www.mathnet.ru/eng/pa/v28/i2/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :27
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024