Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2009, Issue 16, Pages 48–54 (Mi pa32)  

К вопросу о наследственной нормальности пространств вида $\mathcal{F}(x)$

E. V. Kashuba

Petrozavodsk State University, Faculty of Mathematics
Abstract: Ivanov and Kashuba [1] constructed an example assuming the Continuum Hypothesis. There exists a nonmetrizable compact space $X$, such that the following conditions hold: 1) for any natural number $n$ the compact space $X^{n}$ is hereditarily separable; 2) for any natural number $n$ the space $X^{n}\setminus \Delta_{n}$ is hereditarily normal; 3) for any functor $\mathcal{F}$ preserving weight and one-to-one points the space $\mathcal{F}_{k}(X)$ is hereditarily normal ($k$ is the second element of the degree spectrum $sp(\mathcal{F}))$.
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: E. V. Kashuba, “К вопросу о наследственной нормальности пространств вида $\mathcal{F}(x)$”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2009, no. 16, 48–54
Citation in format AMSBIB
\Bibitem{Kas09}
\by E.~V.~Kashuba
\paper К вопросу о наследственной нормальности пространств вида $\mathcal{F}(x)$
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 2009
\issue 16
\pages 48--54
\mathnet{http://mi.mathnet.ru/pa32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2643483}
Linking options:
  • https://www.mathnet.ru/eng/pa32
  • https://www.mathnet.ru/eng/pa/y2009/i16/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024