Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2020, Volume 9(27), Issue 3, Pages 99–118
DOI: https://doi.org/10.15393/j3.art.2020.8830
(Mi pa309)
 

Refinements and reverses of Féjer's inequalities for convex functions on linear spaces

S. S. Dragomir

Victoria University, College of Engineering & Science, PO Box 14428, Melbourne City, MC 8001, Australia
References:
Abstract: In this paper, we establish some refinements and reverses of the celebrated Féjer's inequalities for the general case of functions defined on linear spaces. The obtained bounds are in terms of the Gâteaux lateral derivatives. Some applications for norms and semi-inner products in normed linear spaces are also provided.
Keywords: convex functions, integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities.
Received: 29.07.2020
Revised: 09.10.2020
Accepted: 09.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 26D15, 26D10
Language: English
Citation: S. S. Dragomir, “Refinements and reverses of Féjer's inequalities for convex functions on linear spaces”, Probl. Anal. Issues Anal., 9(27):3 (2020), 99–118
Citation in format AMSBIB
\Bibitem{Dra20}
\by S.~S.~Dragomir
\paper Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces
\jour Probl. Anal. Issues Anal.
\yr 2020
\vol 9(27)
\issue 3
\pages 99--118
\mathnet{http://mi.mathnet.ru/pa309}
\crossref{https://doi.org/10.15393/j3.art.2020.8830}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000590954400006}
Linking options:
  • https://www.mathnet.ru/eng/pa309
  • https://www.mathnet.ru/eng/pa/v27/i3/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025