Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2020, Volume 9(27), Issue 3, Pages 66–82
DOI: https://doi.org/10.15393/j3.art.2020.8270
(Mi pa307)
 

This article is cited in 9 scientific papers (total in 9 papers)

Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals

B. Bayraktar

Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey
Full-text PDF (506 kB) Citations (9)
References:
Abstract: In this study, we formulate the identity and obtain some generalized inequalities of the Hermite–Hadamard type by using fractional Riemann–Liouville integrals for functions whose absolute values of the second derivatives are convex. The results are obtained by uniformly dividing a segment [a,b][a,b] into nn equal sub-intervals. Using this approach, the absolute error of a Midpoint inequality is shown to decrease approximately n2n2 times. A dependency between accuracy of the absolute error (εε) of the upper limit of the Hadamard inequality and the number (nn) of lower intervals is obtained.
Keywords: convexity, Hadamard inequality, Holder's inequality, Power-mean inequality, Riemann-Liouville fractional integrals.
Received: 26.03.2020
Revised: 18.06.2020
Accepted: 23.06.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.86, 517.218.244, 517.927.2
MSC: 26A51, 26D15
Language: English
Citation: B. Bayraktar, “Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals”, Probl. Anal. Issues Anal., 9(27):3 (2020), 66–82
Citation in format AMSBIB
\Bibitem{Bay20}
\by B.~Bayraktar
\paper Some new generalizations of Hadamard--type Midpoint inequalities involving fractional integrals
\jour Probl. Anal. Issues Anal.
\yr 2020
\vol 9(27)
\issue 3
\pages 66--82
\mathnet{http://mi.mathnet.ru/pa307}
\crossref{https://doi.org/10.15393/j3.art.2020.8270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000590954400004}
Linking options:
  • https://www.mathnet.ru/eng/pa307
  • https://www.mathnet.ru/eng/pa/v27/i3/p66
  • This publication is cited in the following 9 articles:
    1. J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified (h,m)(h,m)-convex functions on fractal sets”, Probl. anal. Issues Anal., 13(31):2 (2024), 106–127  mathnet  crossref
    2. Péter Kórus, Juan Eduardo Nápoles Valdés, Bahtiyar Bayraktar, “Weighted Hermite–Hadamard integral inequalities for general convex functions”, MBE, 20:11 (2023), 19929  crossref
    3. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, “New Variant of Hermite–Hadamard, Fejér and Pachpatte-Type Inequality and Its Refinements Pertaining to Fractional Integral Operator”, Fractal Fract, 7:5 (2023), 405  crossref
    4. Bahtiyar Bayraktar, Juan Eduardo Napoles-Valdes, “Integral inequalities for mappings whose derivatives are (h,m,s)-convex modied of second type via Katugampola integrals”, AUCMCS, 49:2 (2022), 371  crossref
    5. B. Bayraktar, A. H. Attaev, V. Ch. Kudaev, “Some generalized Hadamard–type inequalities via fractional integrals”, Russian Math. (Iz. VUZ), 65:2 (2021), 1–14  mathnet  crossref  crossref  isi
    6. S. I. Butt, B. Bayraktar, M. Umar, “Several new integral inequalities via kk-Riemann–Liouville fractional integrals operators”, Probl. anal. Issues Anal., 10(28):1 (2021), 3–22  mathnet  crossref
    7. Ufa Math. J., 13:1 (2021), 119–130  mathnet  crossref  isi
    8. B. Bayraktar, S. I. Butt, Sh. Shaokat, J. E. Nápoles Valdés, “New Hadamard-type inequalities via (s,m1,m2)(s,m1,m2)-convex functions”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:4 (2021), 597–612  mathnet  crossref
    9. “New integral inequalities of Hermite–Hadamard type in a generalized context”, Punjab Univ. j. math., 2021, 765  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :70
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025