|
A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
S. Naik, P. K. Nath Department of Applied Sciences, Gauhati University, Guwahati, Assam, India-781 014
Abstract:
In this article, we prove that the two-parameter family of operators ${\mathcal A}^{b,c}$
is bounded on the weighted Bergman spaces $B_{\alpha+c-1}^p$ if $\alpha+2<p$ and unbounded if $\alpha+2=p$.
Keywords:
generalized Cesáro operator, weighted Bergman space, boundedness.
Received: 27.06.2019 Revised: 01.10.2019 Accepted: 26.09.2019
Citation:
S. Naik, P. K. Nath, “A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces”, Probl. Anal. Issues Anal., 8(26):3 (2019), 125–136
Linking options:
https://www.mathnet.ru/eng/pa278 https://www.mathnet.ru/eng/pa/v26/i3/p125
|
Statistics & downloads: |
Abstract page: | 94 | Full-text PDF : | 22 | References: | 16 |
|