|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2010, Issue 17, Pages 61–66
(Mi pa27)
|
|
|
|
The generalized Koebe function
I. Naraniecka, J. Szynal, A. Tatarczak Maria Curie-Sklodowska University, Lublin
Abstract:
We observe that the extremal function for $|a_{3}|$ within the class $U'_{\alpha}$ (see Starkov [1]) has as well the property that max $|A_{4}|>4.15$, if $\alpha=2$. The problem is equivalent to the global estimate for Meixner-Pollaczek polynomials $P^{1}_{3}(x;\theta)$.
Citation:
I. Naraniecka, J. Szynal, A. Tatarczak, “The generalized Koebe function”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, no. 17, 61–66
Linking options:
https://www.mathnet.ru/eng/pa27 https://www.mathnet.ru/eng/pa/y2010/i17/p61
|
Statistics & downloads: |
Abstract page: | 99 | Full-text PDF : | 49 | References: | 21 |
|