|
This article is cited in 2 scientific papers (total in 2 papers)
Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
B. Alouia, L. Khérijib a Université de Gabès, Institut Supérieur des Systèmes Industriels de Gabès, Rue Salah Eddine Elayoubi 6033 Gabès, Tunisia
b Université de Tunis El Manar, Institut Préparatoire aux Etudes d’Ingénieur El Manar, Campus Universitaire El Manar, B.P. 244, 2092 Tunis, Tunisia
Abstract:
In this paper, we introduce the notion of $\mathfrak{O}_{\varepsilon}$-classical
orthogonal polynomials, where $\mathfrak{O}_{\varepsilon}:=\mathbb{I}+\varepsilon D$
($\varepsilon\neq0$). It is shown that the scaled Laguerre polynomial
sequence $\{a^{-n}L^{(\alpha)}_n(ax)\}_{n\geq0}$, where $a=-\varepsilon^{-1}$, is actually
the only $\mathfrak{O}_{\varepsilon}$-classical sequence. As an illustration, we deal with
some representations of Laguerre polynomials $L^{(0)}_n(x)$ in terms of the action of linear differential
operators on the Laguerre polynomials $L^{(m)}_n(x)$. The inverse connection problem
of expanding Laguerre polynomials $L^{(m)}_n(x)$ in terms of $L^{(0)}_n(x)$ is also considered.
Furthermore, some connection formulas between the monomial basis $\{x^n\}_{n\geq0}$ and the
shifted Laguerre basis $\{L^{(m)}_n(x+1)\}_{n\geq0}$ are deduced.
Keywords:
classical polynomials, Laguerre polynomials, lowering and raising operators, structure relations, higher order differential operators, connection formulas.
Received: 14.05.2019 Revised: 01.10.2019 Accepted: 23.09.2019
Citation:
B. Aloui, L. Khériji, “Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators”, Probl. Anal. Issues Anal., 8(26):3 (2019), 24–37
Linking options:
https://www.mathnet.ru/eng/pa269 https://www.mathnet.ru/eng/pa/v26/i3/p24
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 48 | References: | 24 |
|