Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2019, Volume 8(26), Issue 3, Pages 16–23
DOI: https://doi.org/10.15393/j3.art.2019.6890
(Mi pa268)
 

Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$

T. A. Alexeevaa, N. A. Shirokovba

a National Research University Higher School of Economics, 3A Kantemirovskaya ul., St. Petersburg, 194100, Russia
b St. Petersburg State University, 28 Universitetsky prospekt, Peterhof, St. Petersburg, 198504, Russia
References:
Abstract: Functional classes on a curve in a plane (a partial case of a spatial curve) can be described by the approximation speed by functions that are harmonic in three-dimensional neighbourhoods of the curve. No constructive description of functional classes on rather general surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$ has been presented in literature so far. The main result of the paper is Theorem 1.
Keywords: constructive description, rational functions, harmonic functions, pseudoharmonic functions.
Received: 25.08.2019
Revised: 22.10.2019
Accepted: 16.10.2019
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A30, 41A27
Language: English
Citation: T. A. Alexeeva, N. A. Shirokov, “Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$”, Probl. Anal. Issues Anal., 8(26):3 (2019), 16–23
Citation in format AMSBIB
\Bibitem{AleShi19}
\by T.~A.~Alexeeva, N.~A.~Shirokov
\paper Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 3
\pages 16--23
\mathnet{http://mi.mathnet.ru/pa268}
\crossref{https://doi.org/10.15393/j3.art.2019.6890}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000497499600002}
\elib{https://elibrary.ru/item.asp?id=41470776}
Linking options:
  • https://www.mathnet.ru/eng/pa268
  • https://www.mathnet.ru/eng/pa/v26/i3/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024