Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2019, Volume 8(26), Issue 3, Pages 3–15
DOI: https://doi.org/10.15393/j3.art.2019.7110
(Mi pa267)
 

Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions

G. G. Akniyev

Dagestan Federal Research Center of the Russian Academy of Sciences, 45 Gadzhieva st., Makhachkala 367025, Russia
References:
Abstract: Denote by $L_{n,\,N}(f, x)$ a trigonometric polynomial of order at most $n$ possessing the least quadratic deviation from $f$ with respect to the system $\left\{t_k = u + \frac{2\pi k}{N}\right\}_{k=0}^{N-1}$, where $u \in \mathbb{R}$ and $n \leq N/2$. Let $D^1$ be the space of $2\pi$-periodic piecewise continuously differentiable functions $f$ with a finite number of jump discontinuity points $-\pi = \xi_1 < \ldots < \xi_m = \pi$ and with absolutely continuous derivatives on each interval $(\xi_i, \xi_{i+1})$. In the present article, we consider the problem of approximation of functions $f \in D^1$ by the trigonometric polynomials $L_{n,\,N}(f, x)$. We have found the exact order estimate $\left|f(x) - L_{n,\,N}(f, x)\right| \leq c(f, \varepsilon)/n$, $\left|x - \xi_i\right| \geq \varepsilon$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
Received: 21.11.2018
Revised: 24.09.2019
Accepted: 24.09.2019
Bibliographic databases:
Document Type: Article
UDC: 517.521.2
MSC: 41A25
Language: English
Citation: G. G. Akniyev, “Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 3–15
Citation in format AMSBIB
\Bibitem{Akn19}
\by G.~G.~Akniyev
\paper Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 3
\pages 3--15
\mathnet{http://mi.mathnet.ru/pa267}
\crossref{https://doi.org/10.15393/j3.art.2019.7110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000497499600001}
\elib{https://elibrary.ru/item.asp?id=41470775}
Linking options:
  • https://www.mathnet.ru/eng/pa267
  • https://www.mathnet.ru/eng/pa/v26/i3/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024