Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2019, Volume 8(26), Issue 1, Pages 65–71
DOI: https://doi.org/10.15393/j3.art.2019.5870
(Mi pa258)
 

Cauchy projectors on non-smooth and non-rectifiable curves

B. A. Kats, S. R. Mironova, A. Yu. Pogodina

Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia
References:
Abstract: Let $f(t)$ be defined on a closed Jordan curve $\Gamma$ that divides the complex plane on two domains $D^{+}$, $D^{-}$, $\infty\in D^{-}$. Assume that it is representable as a difference $f(t)=F^{+}(t)-F^{-}(t)$, $t\in\Gamma$, where $F^{\pm}(t)$ are limits of a holomorphic in $\overline{\mathbb C}\setminus\Gamma$ function $F(z)$ for $D^{\pm}\ni z\to t\in\Gamma$, $F(\infty)=0$. The mappings $f\mapsto F^{\pm}$ are called Cauchy projectors.
Let $H_{\nu}(\Gamma)$ be the space of functions satisfying on $\Gamma$ the Hölder condition with exponent $\nu\in (0,1].$ It is well known that on any smooth (or piecewise-smooth) curve $\Gamma$ the Cauchy projectors map $H_{\nu}(\Gamma)$ onto itself for any $\nu\in (0, 1)$, but for essentially non-smooth curves this proposition is not valid.
We will show that even for non-rectifiable curves the Cauchy projectors continuously map the intersection of all spaces $H_{\nu}(\Gamma)$, $0<\nu<1$ (considered as countably-normed Frechet space) onto itself.
Keywords: Cauchy projectors, non-smooth curves, non-rectifiable curves.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-160003_r_a
The research of the first author is partially supported by the Russian Foundation for Basic Researches and the Government of Republic Tatarstan, grant 18-41-160003 r-a.
Received: 28.07.2018
Revised: 24.12.2018
Accepted: 21.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.544
MSC: 30E20
Language: English
Citation: B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “Cauchy projectors on non-smooth and non-rectifiable curves”, Probl. Anal. Issues Anal., 8(26):1 (2019), 65–71
Citation in format AMSBIB
\Bibitem{KatMirPog19}
\by B.~A.~Kats, S.~R.~Mironova, A.~Yu.~Pogodina
\paper Cauchy projectors on non-smooth and non-rectifiable curves
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 1
\pages 65--71
\mathnet{http://mi.mathnet.ru/pa258}
\crossref{https://doi.org/10.15393/j3.art.2019.5870}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459770700005}
\elib{https://elibrary.ru/item.asp?id=37104077}
Linking options:
  • https://www.mathnet.ru/eng/pa258
  • https://www.mathnet.ru/eng/pa/v26/i1/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :51
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024