Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2019, Volume 8(26), Issue 1, Pages 32–46
DOI: https://doi.org/10.15393/j3.art.2019.5150
(Mi pa256)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sobolev-orthonormal system of functions generated by the system of Laguerre functions

R. M. Gadzhimirzaev

Dagestan Scientific Center of RAS, 45, M.Gadzhieva st., Makhachkala, 367025, Russia
Full-text PDF (467 kB) Citations (5)
References:
Abstract: We consider the system of functions $\lambda_{r,n}^\alpha(x)$ ($r\in\mathbb{N}$, $n=0, 1, 2, \ldots$), orthonormal with respect to the Sobolev-type inner product $\langle f, g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(x)g^{(r)}(x) dx$ and generated by the orthonormal Laguerre functions. The Fourier series in the system $\{\lambda_{r,n}^{\alpha}(x)\}_{k=0}^\infty$ is shown to uniformly converge to the function $f\in W_{L^p}^r$ for $\frac{4}{3}<p<4$, $\alpha\geq0$, $x\in[0, A]$, $0\leq A<\infty$. Recurrence relations are obtained for the system of functions $\lambda_{r,n}^\alpha(x)$. Moreover, we study the asymptotic properties of the functions $\lambda_{1,n}^\alpha(x)$ as $n\rightarrow\infty$ for $0\leq x\leq\omega$, where $\omega$ is a fixed positive real number.
Keywords: Laguerre polynomials, Laguerre functions, inner product of Sobolev type, Sobolev-orthonormal functions, recurrence relations, Fourier series, asymptotic formula.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00477_mol_a
This work was written with the support of the Russian Foundation for Basic Research (grant 18-31-00477_mol_a).
Received: 02.11.2018
Revised: 04.02.2019
Accepted: 03.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 42C10, 65Q30
Language: English
Citation: R. M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8(26):1 (2019), 32–46
Citation in format AMSBIB
\Bibitem{Gad19}
\by R.~M.~Gadzhimirzaev
\paper Sobolev-orthonormal system of functions generated by the system of Laguerre functions
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 1
\pages 32--46
\mathnet{http://mi.mathnet.ru/pa256}
\crossref{https://doi.org/10.15393/j3.art.2019.5150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459770700003}
\elib{https://elibrary.ru/item.asp?id=37104074}
Linking options:
  • https://www.mathnet.ru/eng/pa256
  • https://www.mathnet.ru/eng/pa/v26/i1/p32
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :63
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024