Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2018, Volume 7(25), special issue, Pages 63–71
DOI: https://doi.org/10.15393/j3.art.2018.5510
(Mi pa241)
 

On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions

M. A. Komarov

Vladimir State University, Gor'kogo street 87, Vladimir 600000, Russia
References:
Abstract: We study a uniform approximation by differences $\Theta_1-\Theta_2$ of simplest fractions (s.f.'s), i. e., by logarithmic derivatives of rational functions on continua $K$ of the class $\Omega_r$, $r>0$ (i. e., any points $z_0, z_1\in K$ can be joined by a rectifiable curve in $K$ of length $\le r$). We prove that for any proper one-pole fraction $T$ of degree $m$ with a zero residue there are such s.f.'s $\Theta_1,\Theta_2$ of order $\le (m-1)n$ that $\|T+\Theta_1-\Theta_2\|_K\le 2r^{-1}A^{2n+1}n!^2/(2n)!^2$, where the constant $A$ depends on $r$, $T$ and $K$. Hence, the rate of approximation of any fixed individual rational function $R$, whose integral is single-valued on $\mathbb{C}$, has the same order. This result improves the famous estimate $\|R+\Theta_1-\Theta_2\|_{C(K)}\le 2e^r r^n/n!$, given by Danchenko for the case $\|R\|_{C(K)}\le 1$.
Keywords: difference of simplest fractions, rate of uniform approximation, logarithmic derivative of rational function.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00312_mol_a
This work was supported by RFBR project 18-31-00312 mol_a.
Received: 16.05.2018
Revised: 14.09.2018
Accepted: 15.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: 41A25, 41A20
Language: English
Citation: M. A. Komarov, “On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions”, Probl. Anal. Issues Anal., 7(25), special issue (2018), 63–71
Citation in format AMSBIB
\Bibitem{Kom18}
\by M.~A.~Komarov
\paper On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions
\jour Probl. Anal. Issues Anal.
\yr 2018
\vol 7(25)
\pages 63--71
\issueinfo special issue
\mathnet{http://mi.mathnet.ru/pa241}
\crossref{https://doi.org/10.15393/j3.art.2018.5510}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445966700006}
\elib{https://elibrary.ru/item.asp?id=35688772}
Linking options:
  • https://www.mathnet.ru/eng/pa241
  • https://www.mathnet.ru/eng/pa/v25/i3/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025