|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2010, Issue 17, Pages 26–37
(Mi pa24)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке
I. A. Chernov Institute of Applied Mathematical Research, Karelian Research Centre, RAS, Petrozavodsk
Abstract:
We consider the one-dimensional quazi-linear parabolic Neumann boundary value problem: coeffcients of the partial differential equation and right-hand sides of the boundary conditions depend on time, point, and the history of the solution. Convergence of difference approximations to a weak solution to the problem is proved.
Citation:
I. A. Chernov, “Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, no. 17, 26–37
Linking options:
https://www.mathnet.ru/eng/pa24 https://www.mathnet.ru/eng/pa/y2010/i17/p26
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 82 | References: | 62 |
|