|
This article is cited in 1 scientific paper (total in 1 paper)
About planar $(\alpha,\beta)$–accessible domains
K. F. Amozova, E. G. Ganenkova Petrozavodsk State University,
Lenin Avenue, 33, 185910 Petrozavodsk, Russia
Abstract:
The article is devoted to the class $A^{\alpha,\beta}_{\rho}$ of all $(\alpha,\beta)$–accessible with respect to the origin domains $D,$ $\alpha,\beta\in[0,1),$ possessing the property\thinspace $\rho=\min\limits_{p\in\partial D}|p|,$\thinspace where\thinspace $\rho\thinspace\in \thinspace(0,+\infty)$ is a fixed number. We find the maximal set of points $a$ such that all domains $D\in A^{\alpha,\beta}_{\rho}$ are $(\gamma,\delta)$–accessible with respect to $a,$ $\gamma\in[0;\alpha],$ $\delta\in[0;\beta]$. This set is proved to be the closed disc of center $0$ and radius $\rho\sin\displaystyle\frac{\varphi\pi}{2},$ where $\varphi=\min\left\{\alpha-\gamma,\beta-\delta\right\}$.
Keywords:
$\alpha$–accessible domain, $(\alpha,\beta)$–accessible domain, cone condition.
Received: 03.09.2014
Citation:
K. F. Amozova, E. G. Ganenkova, “About planar $(\alpha,\beta)$–accessible domains”, Probl. Anal. Issues Anal., 3(21):2 (2014), 3–15
Linking options:
https://www.mathnet.ru/eng/pa179 https://www.mathnet.ru/eng/pa/v21/i2/p3
|
Statistics & downloads: |
Abstract page: | 208 | Full-text PDF : | 69 | References: | 43 |
|