Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2014, Volume 3(21), Issue 2, Pages 3–15
DOI: https://doi.org/10.15393/j3.art.20014.2689
(Mi pa179)
 

This article is cited in 1 scientific paper (total in 1 paper)

About planar $(\alpha,\beta)$–accessible domains

K. F. Amozova, E. G. Ganenkova

Petrozavodsk State University, Lenin Avenue, 33, 185910 Petrozavodsk, Russia
Full-text PDF (636 kB) Citations (1)
References:
Abstract: The article is devoted to the class $A^{\alpha,\beta}_{\rho}$ of all $(\alpha,\beta)$–accessible with respect to the origin domains $D,$ $\alpha,\beta\in[0,1),$ possessing the property\thinspace $\rho=\min\limits_{p\in\partial D}|p|,$\thinspace where\thinspace $\rho\thinspace\in \thinspace(0,+\infty)$ is a fixed number. We find the maximal set of points $a$ such that all domains $D\in A^{\alpha,\beta}_{\rho}$ are $(\gamma,\delta)$–accessible with respect to $a,$ $\gamma\in[0;\alpha],$ $\delta\in[0;\beta]$. This set is proved to be the closed disc of center $0$ and radius $\rho\sin\displaystyle\frac{\varphi\pi}{2},$ where $\varphi=\min\left\{\alpha-\gamma,\beta-\delta\right\}$.
Keywords: $\alpha$–accessible domain, $(\alpha,\beta)$–accessible domain, cone condition.
Received: 03.09.2014
Bibliographic databases:
Document Type: Article
MSC: 52A30, 03E15
Language: English
Citation: K. F. Amozova, E. G. Ganenkova, “About planar $(\alpha,\beta)$–accessible domains”, Probl. Anal. Issues Anal., 3(21):2 (2014), 3–15
Citation in format AMSBIB
\Bibitem{AmoKom14}
\by K.~F.~Amozova, E.~G.~Ganenkova
\paper About planar $(\alpha,\beta)$--accessible domains
\jour Probl. Anal. Issues Anal.
\yr 2014
\vol 3(21)
\issue 2
\pages 3--15
\mathnet{http://mi.mathnet.ru/pa179}
\crossref{https://doi.org/10.15393/j3.art.20014.2689}
\elib{https://elibrary.ru/item.asp?id=22927219}
Linking options:
  • https://www.mathnet.ru/eng/pa179
  • https://www.mathnet.ru/eng/pa/v21/i2/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :69
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024