|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 1996, Issue 3, Pages 62–71
(Mi pa137)
|
|
|
|
The maximum of some functional for holomorphic and univalent functions with real coefficients
W. Majchrzak, A. Szwankowski
Abstract:
In the paper the maximum of the functional $a^{k}_{2}a^{m}_{3}(a_{3}-\alpha a^{2}_{2})$ in the class $S_{R}$ of functions $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}, a_{n}=\overline{a_{n}}$, holomorphic and univalent in the unit disc is obtained for $\alpha$ real and $k, m$ positive integers.
Citation:
W. Majchrzak, A. Szwankowski, “The maximum of some functional for holomorphic and univalent functions with real coefficients”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1996, no. 3, 62–71
Linking options:
https://www.mathnet.ru/eng/pa137 https://www.mathnet.ru/eng/pa/y1996/i3/p62
|
Statistics & downloads: |
Abstract page: | 71 | Full-text PDF : | 41 |
|