Optics and Spectroscopy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Optics and Spectroscopy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Optics and Spectroscopy, 2019, Volume 126, Issue 5, Pages 663–669
DOI: https://doi.org/10.21883/OS.2019.05.47668.17-19
(Mi os724)
 

This article is cited in 9 scientific papers (total in 9 papers)

The 22nd Annual Conference Saratov Fall Meeting 2018 (SFM'18): VI International Symposium ''Optics and Biophotonics'' and XXII International School for Junior Scientists and Students on Optics, Laser Physics & Biophotonics
Biophotonics

Plasmonic photoconductive antennas for terahertz pulsed spectroscopy and imaging systems

D. V. Lavrukhinab, R. R. Galieva, A. Yu. Pavlovab, A. E. Yachmenevab, M. V. Maytamaab, I. A. Glinskiyab, R. A. Khabibullinab, Yu. G. Goncharovb, K. I. Zaitsevbc, D. S. Ponomarevba

a V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow
b Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow
c Bauman Moscow State Technical University
Citations (9)
Abstract: We propose a terahertz (THz) plasmonic photoconductive antenna (PCA) with a record height of its metal electrodes of h = 100 nm and a high aspect ratio of h/p = 0.5 (p is the period of the plasmonic grating) that can be used as a source is THz pulsed spectroscopic and imaging systems. We experimentally demonstrate that the power of the THz radiation generated by the proposed plasmonic PCA is two orders of magnitude higher than that of an equivalent ordinary PCA without a plasmonic grating. Current–voltage measurements of the thus developed plasmonic PCA under femtosecond laser excitation show that the photocurrent of the PCA increases 15-fold, up to ip 1.2 mA. To reduce the leakage currents of the PCA, we propose a fabrication technology that is based on the etching of windows in a thin Si3N4 passivation dielectric layer deposited on the photoconductor surface, which makes it possible to reduce the dark current to id 5 μA.
Funding agency Grant number
Russian Science Foundation 18-79-10195
Ministry of Education and Science of the Russian Federation МК-5450.2018.2
Foundation for Assistance to Small Innovative Enterprises within the framework of the International Program ERA.Net RUS 13099ГУ/2018
Numerical modeling and experimental investigations of PCAs were supported by the Russian Science Foundation, project no. 18-79-10195. Preparation of samples of PCAs was supported by grants from the President of the Russian Federation (project no. MK-5450.2018.2) and from the Foundation for Assistance to Small Innovative Enterprises (project no. 13099GU/2018).
Received: 13.11.2018
Revised: 29.01.2019
Accepted: 31.01.2019
English version:
Optics and Spectroscopy, 2019, Volume 126, Issue 5, Pages 580–586
DOI: https://doi.org/10.1134/S0030400X19050199
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Lavrukhin, R. R. Galiev, A. Yu. Pavlov, A. E. Yachmenev, M. V. Maytama, I. A. Glinskiy, R. A. Khabibullin, Yu. G. Goncharov, K. I. Zaitsev, D. S. Ponomarev, “Plasmonic photoconductive antennas for terahertz pulsed spectroscopy and imaging systems”, Optics and Spectroscopy, 126:5 (2019), 663–669; Optics and Spectroscopy, 126:5 (2019), 580–586
Citation in format AMSBIB
\Bibitem{LavGalPav19}
\by D.~V.~Lavrukhin, R.~R.~Galiev, A.~Yu.~Pavlov, A.~E.~Yachmenev, M.~V.~Maytama, I.~A.~Glinskiy, R.~A.~Khabibullin, Yu.~G.~Goncharov, K.~I.~Zaitsev, D.~S.~Ponomarev
\paper Plasmonic photoconductive antennas for terahertz pulsed spectroscopy and imaging systems
\jour Optics and Spectroscopy
\yr 2019
\vol 126
\issue 5
\pages 663--669
\mathnet{http://mi.mathnet.ru/os724}
\crossref{https://doi.org/10.21883/OS.2019.05.47668.17-19}
\elib{https://elibrary.ru/item.asp?id=39133882}
\transl
\jour Optics and Spectroscopy
\yr 2019
\vol 126
\issue 5
\pages 580--586
\crossref{https://doi.org/10.1134/S0030400X19050199}
Linking options:
  • https://www.mathnet.ru/eng/os724
  • https://www.mathnet.ru/eng/os/v126/i5/p663
  • This publication is cited in the following 9 articles:
    1. Anupma Gupta, Vipan Kumar, Dinesh Garg, Mohammed H. Alsharif, Abu Jahid, “Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer”, Micromachines, 14:7 (2023), 1281  crossref
    2. D. S. Ponomarev, D. V. Lavrukhin, N. V. Zenchenko, T. V. Frolov, I. A. Glinskiy, R. A. Khabibullin, G. M. Katyba, V. N. Kurlov, T. Otsuji, K. I. Zaytsev, “Boosting photoconductive large-area THz emitter via optical light confinement behind a highly refractive sapphire-fiber lens”, Opt. Lett., 47:7 (2022), 1899  crossref
    3. D. V. Lavrukhin, I. A. Glinskiy, N. V. Zenchenko, R. A. Khabibullin, A. V. Arsenin, D. I. Yakubovsky, V. S. Volkov, I. V. Minin, O. V. Minin, K. I. Zaytsev, D. S. Ponomarev, PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019), 2359, PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019), 2021, 020026  crossref
    4. A. E. Yachmenev, D. V. Lavrukhin, R. A. Khabibullin, Yu. G. Goncharov, I. E. Spektor, K. I. Zaitsev, V. A. Solov'ev, S. V. Ivanov, D. S. Ponomarev, “Photoconductive THz detector based on new functional layers in multi-layer heterostructures”, Optics and Spectroscopy, 129:8 (2021), 851–856  mathnet  mathnet  crossref  crossref
    5. Sergey Nomoev, Ivan Vasilevskii, Alexander Vinichenko, “The Research for Approaches to Increase Power of the Compact THz Emitters Based on Low-Temperature Gallium Arsenide Heterostructures”, SSP, 310 (2020), 101  crossref
    6. A. V. Gorbatova, D. I. Khusyainov, A. E. Yachmenev, R. A. Khabibullin, D. S. Ponomarev, A. M. Buryakov, E. D. Mishina, “A photoconductive THz detector based on a superlattice heterostructure with plasmonic amplification”, Tech. Phys. Lett., 46:11 (2020), 1111–1115  mathnet  mathnet  crossref  crossref
    7. D S Ponomarev, D V Lavrukhin, A E Yachmenev, R A Khabibullin, I E Semenikhin, V V Vyurkov, K V Marem'yanin, V I Gavrilenko, M Ryzhii, M Shur, T Otsuji, V Ryzhii, “Sub-terahertz FET detector with self-assembled Sn-nanothreads”, J. Phys. D: Appl. Phys., 53:7 (2020), 075102  crossref
    8. D. V. Lavrukhin, A. E. Yachmenev, I. A. Glinskiy, N. V. Zenchenko, R. A. Khabibullin, Yu. G. Goncharov, I. E. Spektor, K. I. Zaitsev, D. S. Ponomarev, “Emission efficiency of terahertz antennas with conventional topology and metal metasurface: a comparative analysis”, Optics and Spectroscopy, 128:7 (2020), 1018–1025  mathnet  mathnet  crossref  crossref
    9. S Nomoev, I Vasilevskii, A Klochkov, A Vinichenko, E Khartaeva, “Terahertz photoconductive antenna with embedded electrodes: simulation and experiment”, IOP Conf. Ser.: Mater. Sci. Eng., 1000:1 (2020), 012010  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Optics and Spectroscopy Optics and Spectroscopy
    Statistics & downloads:
    Abstract page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025