Abstract:
Experimental results on the manufacturing and study of the properties of 7–8 μμm wavelength range injection quantum-cascade lasers (QCLs) with a waveguide with a thin top cladding layer based on indium phosphide are presented. The heterostructure is formed by molecular beam epitaxy on an InP substrate, with a In0.530.53Ga0.470.47As/Al0.480.48In0.520.52As active region. Lasing at a wavelength of 7.8 μμm at a temperature of 300 K with a threshold current density of ∼∼6 kA/cm22 is obtained. Characteristic temperature T0T0 and T1T1 values for the QCLs are about 150 K and 450 K, respectively. Obtained results confirm the promising design of the QCLs with a waveguide with a thin top cladding layer for detecting liquids and microfluidic devices development.
Citation:
A. V. Babichev, A. G. Gladyshev, D. V. Denisov, L. Ya. Karachinsky, I. I. Novikov, L. Boulley, A. Bousseksou, N. A. Pikhtin, A. Yu. Egorov, “Lasing of a quantum-cascade laser with a thin upper cladding”, Optics and Spectroscopy, 127:2 (2019), 278–282; Optics and Spectroscopy, 127:2 (2019), 279–284
\Bibitem{BabGlaDen19}
\by A.~V.~Babichev, A.~G.~Gladyshev, D.~V.~Denisov, L.~Ya.~Karachinsky, I.~I.~Novikov, L.~Boulley, A.~Bousseksou, N.~A.~Pikhtin, A.~Yu.~Egorov
\paper Lasing of a quantum-cascade laser with a thin upper cladding
\jour Optics and Spectroscopy
\yr 2019
\vol 127
\issue 2
\pages 278--282
\mathnet{http://mi.mathnet.ru/os642}
\crossref{https://doi.org/10.21883/OS.2019.08.48041.82-19}
\elib{https://elibrary.ru/item.asp?id=41131014}
\transl
\jour Optics and Spectroscopy
\yr 2019
\vol 127
\issue 2
\pages 279--284
\crossref{https://doi.org/10.1134/S0030400X19080058}
Linking options:
https://www.mathnet.ru/eng/os642
https://www.mathnet.ru/eng/os/v127/i2/p278
This publication is cited in the following 4 articles:
A. V. Babichev, E. S. Kolodeznyi, A. G. Gladyshev, D. V. Denisov, G. V. Voznyuk, M. I. Mitrofanov, D. A. Mikhailov, D. V. Chistyakov, D. I. Kuritsyn, V. V. Dyudelev, S. O. Slipchenko, A. V. Lyutetskiy, V. P. Evtikhiev, L. Ya. Karachinsky, I. I. Novikov, S. V. Morozov, G. S. Sokolovskii, N. A. Pikhtin, A. Yu. Egorov, “Quantum-cascade laser with radiation output through a textured layer”, Semiconductors, 56:1 (2022), 1–4
A. V. Babichev, E. S. Kolodeznyi, A. G. Gladyshev, D. V. Denisov, G. V. Voznyuk, M. I. Mitrofanov, N. Yu. Kharin, V. Yu. Panevin, S. O. Slipchenko, A. V. Lyutetskiy, V. P. Evtikhiev, L. Ya. Karachinsky, I. I. Novikov, N. A. Pikhtin, A. Yu. Egorov, “Surface emitting quantum-cascade ring laser”, Semiconductors, 55:7 (2021), 591–594
A. V. Babichev, D. A. Pashnev, A. G. Gladyshev, D. V. Denisov, G. V. Voznyuk, L. Ya. Karachinsky, I. I. Novikov, M. I. Mitrofanov, V. P. Evtikhiev, D. A. Firsov, L. E. Vorob'ev, N. A. Pikhtin, A. Yu. Egorov, “Quantum-cascade lasers with a distributed Bragg reflector formed by ion-beam etching”, Tech. Phys. Lett., 46:4 (2020), 312–315
A. V. Babichev, A. G. Gladyshev, V. V. Dyudelev, L. Ya. Karachinsky, I. I. Novikov, D. V. Denisov, S. O. Slipchenko, A. V. Lyutetskiy, N. A. Pikhtin, G. S. Sokolovskii, A. Yu. Egorov, “Heterostructures of quantum-cascade laser for the spectral range of 4.6 μμm for obtaining a continuous-wave lasing mode”, Tech. Phys. Lett., 46:5 (2020), 442–445