Abstract:
The Raman spectra of glycine in crystalline form and in aqueous solution were obtained. The model of stabilization of the zwitterion state of glycine with a single water molecule connected by hydrogen bonds with the –COO- and –NH+3+3 groups is proposed. It is shown that quantum chemical calculations at the level of B3LYP/6-311++G(3df,2p) using the discrete-continuum model of water environment of glycine complexes Gly + nn⋅⋅ H22O (nn = 1–3) provide a good description of the Raman spectra of glycine.
Keywords:
amino acids, glycine, Raman spectroscopy, density functional theory, water environment.
Citation:
I. V. Krauklis, A. V. Tulub, A. V. Golovin, V. P. Chelibanov, “Raman spectra of glycine and their modeling in the discrete-continuum model of water environment”, Optics and Spectroscopy, 128:10 (2020), 1488–1491; Optics and Spectroscopy, 128:10 (2020), 1598–1601
\Bibitem{KraTulGol20}
\by I.~V.~Krauklis, A.~V.~Tulub, A.~V.~Golovin, V.~P.~Chelibanov
\paper Raman spectra of glycine and their modeling in the discrete-continuum model of water environment
\jour Optics and Spectroscopy
\yr 2020
\vol 128
\issue 10
\pages 1488--1491
\mathnet{http://mi.mathnet.ru/os280}
\crossref{https://doi.org/10.21883/OS.2020.10.50019.161-20}
\elib{https://elibrary.ru/item.asp?id=44154149}
\transl
\jour Optics and Spectroscopy
\yr 2020
\vol 128
\issue 10
\pages 1598--1601
\crossref{https://doi.org/10.1134/S0030400X20100161}
Linking options:
https://www.mathnet.ru/eng/os280
https://www.mathnet.ru/eng/os/v128/i10/p1488
This publication is cited in the following 6 articles:
Mark Christie, Mozhdeh Mohammadpour, Jan Sefcik, Karen Faulds, Karen Johnston, “Uncovering the Vibrational Modes of Zwitterion Glycine in Aqueous Solution”, Vibrational Spectroscopy, 2025, 103783
G. O. Stepanov, N. N. Rodionova, R. R. Konstantinov, K. A. Subbotin, “Effect of adding technologically processed antibodies to interferon-gamma into a parent solution on the structural features of triglycine sulfate crystals grown from this solution”, Fine Chem. Technol., 18:6 (2024), 517
Ethan Berger, Juha Niemelä, Outi Lampela, André H. Juffer, Hannu-Pekka Komsa, “Raman Spectra of Amino Acids and Peptides from Machine Learning Polarizabilities”, J. Chem. Inf. Model., 64:12 (2024), 4601
V. A. Alekseeva, I. V. Krauklis, Yu. V. Chizhov, A. V. Tulub, “Formation of Glycine and Alanine Zwitter-Ionic Structures Within the Discrete-Continuum Model of a Water Solvent: Intramolecular Proton Transfer”, J Struct Chem, 65:11 (2024), 2272
Zhancong Liang, Zhihao Cheng, Ruifeng Zhang, Yiming Qin, Chak K. Chan, “Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts”, Atmos. Chem. Phys., 23:16 (2023), 9585
Caroleny Villalba‐Hernández, María de los Angeles Moyaho‐Bernal, Freddy Narea‐Jiménez, Héctor Nahum Chavarría‐Lizárraga, María Cecilia Galeazzi‐Minutti, Rosendo Carrasco‐Gutiérrez, Jorge Castro‐Ramos, “Periodontitis detection using Raman spectroscopy, support vector machine, and salivary biomarkers”, J Raman Spectroscopy, 53:5 (2022), 911