Processing math: 100%
Nuclear Physics B
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nuclear Physics B, 2014, Volume 881, Pages 343–368
DOI: https://doi.org/10.1016/j.nuclphysb.2014.02.014
(Mi nphb7)
 

This article is cited in 27 scientific papers (total in 27 papers)

Form factors in quantum integrable models with GL(3)-invariant R-matrix

S. Pakuliakabc, E. Ragoucyde, N. A. Slavnovf

a Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg., Russia
b Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
c Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg., Russia
d Laboratoire de Physique Théorique LAPTH, CNRS
e Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
f Steklov Mathematical Institute, Moscow, Russia
Citations (27)
Abstract: We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00980
11-01-00440
13-01-12405
National Research University Higher School of Economics 12-09-0064
Agence Nationale de la Recherche SIMI1 2010-BLAN-0120-02
Russian Academy of Sciences - Federal Agency for Scientific Organizations 19
Ministry of Education and Science of the Russian Federation SS-4612.2012.1
The work of S.P. was supported in part by RFBR grant 11-01-00980-a and grant of Scientific Foundation of NRU HSE 12-09-0064. E.R. was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). N.A.S. was supported by the Program of RAS Basic Problems of the Nonlinear Dynamics, RFBR-11-01-00440-a, RFBR-13-01-12405-ofi-m2, SS-4612.2012.1.
Received: 10.01.2014
Revised: 11.02.2014
Accepted: 12.02.2014
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/nphb7
  • This publication is cited in the following 27 articles:
    1. Nikolay Gromov, Nicolò Primi, Paul Ryan, “Form-factors and complete basis of observables via separation of variables for higher rank spin chains”, J. High Energ. Phys., 2022:11 (2022)  crossref
    2. A. Hutsalyuk, B. Pozsgay, L. Pristyák, “The LeClair-Mussardo series and nested Bethe Ansatz”, Nuclear Physics B, 964 (2021), 115306  crossref
    3. Giuliano Niccoli, Hao Pei, Véronique Terras, “Correlation functions by separation of variables: the XXX spin chain”, SciPost Phys., 10:1 (2021)  crossref
    4. N. A. Slavnov, “Generating function for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 204:3 (2020), 1216–1226  mathnet  mathnet  crossref  crossref  isi  scopus
    5. Neil J Robinson, Jean-Sébastien Caux, Robert M Konik, “Light cone dynamics in excitonic states of two-component Bose and Fermi gases”, J. Stat. Mech., 2020:1 (2020), 013103  crossref
    6. N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53  mathnet  crossref
    7. G.A.P. Ribeiro, “Correlation functions of integrable O(n) spin chains”, Nuclear Physics B, 957 (2020), 115106  crossref
    8. J M Maillet, G Niccoli, “Complete spectrum of quantum integrable lattice models associated to $\boldsymbol {\mathcal{U}_{q} (\widehat{gl_{n}})}$ by separation of variables”, J. Phys. A: Math. Theor., 52:31 (2019), 315203  crossref
    9. Jean Michel Maillet, Giuliano Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y(gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019)  crossref
    10. N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778  mathnet  mathnet  crossref  crossref  isi  scopus
    11. H Boos, A Hutsalyuk, Kh S Nirov, “On the calculation of the correlation functions of the $ \newcommandt{\mathfrak{sl}_2} \newcommandtr{\mathfrak{sl}_3} \sltr$ -model by means of the reduced qKZ equation”, J. Phys. A: Math. Theor., 51:44 (2018), 445202  crossref
    12. S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech., 2018:9 (2018), 93103–28  mathnet  crossref  isi  scopus
    13. Andrew J A James, Robert M Konik, Philippe Lecheminant, Neil J Robinson, Alexei M Tsvelik, “Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods”, Rep. Prog. Phys., 81:4 (2018), 046002  crossref
    14. Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6–30  mathnet  crossref  isi
    15. Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018  crossref
    16. Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)  crossref
    17. A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004–22  mathnet  crossref  isi  scopus
    18. Eric Ragoucy, “Bethe vectors and form factors for two-component bose gas”, Phys. Part. Nuclei Lett., 14:2 (2017), 336  crossref
    19. Karol K. Kozlowski, Eric Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nuclear Physics B, 906 (2016), 241  crossref
    20. A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:129
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025