|
This article is cited in 27 scientific papers (total in 27 papers)
Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix
S. Pakuliakabc, E. Ragoucyde, N. A. Slavnovf a Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg., Russia
b Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
c Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg., Russia
d Laboratoire de Physique Théorique LAPTH, CNRS
e Université de Savoie, BP 110,
74941 Annecy-le-Vieux Cedex, France
f Steklov Mathematical Institute, Moscow, Russia
Abstract:
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing $GL(3)$-invariant
$R$-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy
matrix. These representations can be used for the calculation of form factors and correlation functions of
the XXX $SU(3)$-invariant Heisenberg chain.
Received: 10.01.2014 Revised: 11.02.2014 Accepted: 12.02.2014
Linking options:
https://www.mathnet.ru/eng/nphb7
|
Statistics & downloads: |
Abstract page: | 104 |
|