Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2023, Volume 19, Number 3, Pages 359–370
DOI: https://doi.org/10.20537/nd230802
(Mi nd858)
 

Nonlinear physics and mechanics

On a Sailed Spacecraft Motion along a Handrail Fixed to Two Heliocentric Space Stations

V. S. Vaskova, A. V. Rodnikov

Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
References:
Abstract: Motion of a particle modeling a spacecraft with a solar sail along a handrail joining two heliocentric space stations is considered under the assumption that the sail is a perfect reflecting plane that can be located at any angle with respect to the direction of solar rays, the particle does not leave the plane of the orbit of the stations, the handrail is a tether that realizes an ideal unilateral constraint whose boundary is some ellipse, and the particle motion is sufficiently fast with respect to the orbital motion of the stations to neglect noninertiality of the orbital frame of reference. The equations of particle motion are written in dimensionless form without parameters, and the existence of an energy integral for the case of the sail orientation depending only on the spacecraft location is established. This integral is used for complete integration of the equations of motion for the particle relocations along the constraint boundary. The optimal length of the tether for the fastest relocation of a particle between the most remote points of the constraint boundary is computed for the case of the sail being orthogonal to the solar rays throughout the motion. Such a relocation time is computed in dimensionless form and for some real and hypothetical situations. A set of pairs of points in the constraint boundary between which relocation along the constraint boundary with zero initial and final velocities and with the invariably oriented sail is possible is constructed depending on the eccentricity of the ellipse. The result is presented as several plots that illustrate the evolution of the pairs’ regions as the eccentricity of the ellipse changes.
Keywords: space tether system, handrail constraint, unilateral constraint, solar sail, helio- centric space station.
Funding agency
This research was carried out at the Moscow Aviation Institute (National Research University).
Received: 22.03.2023
Accepted: 06.07.2023
Document Type: Article
Language: English
Citation: V. S. Vaskova, A. V. Rodnikov, “On a Sailed Spacecraft Motion along a Handrail Fixed to Two Heliocentric Space Stations”, Rus. J. Nonlin. Dyn., 19:3 (2023), 359–370
Citation in format AMSBIB
\Bibitem{VasRod23}
\by V. S. Vaskova, A. V. Rodnikov
\paper On a Sailed Spacecraft Motion along a Handrail Fixed to Two Heliocentric Space Stations
\jour Rus. J. Nonlin. Dyn.
\yr 2023
\vol 19
\issue 3
\pages 359--370
\mathnet{http://mi.mathnet.ru/nd858}
\crossref{https://doi.org/10.20537/nd230802}
Linking options:
  • https://www.mathnet.ru/eng/nd858
  • https://www.mathnet.ru/eng/nd/v19/i3/p359
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :6
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024