Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2022, Volume 18, Number 5, Pages 927–937
DOI: https://doi.org/10.20537/nd221220
(Mi nd834)
 

Mathematical problems of nonlinearity

Formal Asymptotics of Parametric Subresonance

P. Astafyevaa, O. Kiselevb

a Institute of Mathematics with Computer Centre of UFRC RAS, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, 450062 Russia
b Innopolis University, Institute of Mathematics with Computer Centre of UFRC RAS, ul. Universitetskaya 1, Innopolis, 420500 Russia
References:
Abstract: The article is devoted to a comprehensive study of linear equations of the second order with an almost periodic coefficient. Using an asymptotic approach, the system of equations for parametric subresonant growth of the amplitude of oscillations is obtained. Moreover, the time of a turning point from the growth of the amplitude to the bounded oscillations in the slow variable is found. Also, a comparison between the asymptotic approximation for the turning time and the numerical one is shown.
Keywords: classical analysis and ODEs, subresonant, almost periodic function,small denominator.
Received: 15.09.2022
Accepted: 05.12.2022
Bibliographic databases:
Document Type: Article
Language: english
Citation: P. Astafyeva, O. Kiselev, “Formal Asymptotics of Parametric Subresonance”, Rus. J. Nonlin. Dyn., 18:5 (2022), 927–937
Citation in format AMSBIB
\Bibitem{AstKis22}
\by P. Astafyeva, O. Kiselev
\paper Formal Asymptotics of Parametric Subresonance
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 5
\pages 927--937
\mathnet{http://mi.mathnet.ru/nd834}
\crossref{https://doi.org/10.20537/nd221220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527662}
Linking options:
  • https://www.mathnet.ru/eng/nd834
  • https://www.mathnet.ru/eng/nd/v18/i5/p927
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :19
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024