Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2022, Volume 18, Number 2, Pages 253–287
DOI: https://doi.org/10.20537/nd220208
(Mi nd792)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical problems of nonlinearity

The Thermodynamic Formalism and the Central Limit Theorem for Stochastic Perturbations of Circle Maps with a Break

A. Dzhalilova, D. Mayerb, A. Aliyevc

a Natural-Mathematical Science Department, Turin Polytechnic University, Kichik Halqa Yoli 17, Tashkent 100095, Uzbekistan
b Institut für Theoretische Physik, TU Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld, Germany
c V. I. Romanovsky Institute of Mathematics, Academy of Sciences, Beruniy street 369, Tashkent 100170, Uzbekistan
Full-text PDF (494 kB) Citations (1)
References:
Abstract: Let $T\in C^{2+\varepsilon}(S^{1}\setminus\{x_b^{}\})$, $\varepsilon>0$, be an orientation preserving circle homeomorphism with rotation number $\rho_T^{}=[k_1^{},\,k_2^{},\,\ldots,\,k_m^{},\,1,\,1,\,\ldots]$, $m\ge1$, and a single break point $x_b^{}$. Stochastic perturbations $\overline{z}_{n+1}^{} = T(\overline{z}_n^{}) + \sigma \xi_{n+1}^{}$, $\overline{z}_0^{}:=z\in S^1$ of critical circle maps have been studied some time ago by Diaz-Espinoza and de la Llave, who showed for the resulting sum of random variables a central limit theorem and its rate of convergence. Their approach used the renormalization group technique. We will use here Sinai's et al. thermodynamic formalism approach, generalised to circle maps with a break point by Dzhalilov et al., to extend the above results to circle homemorphisms with a break point. This and the sequence of dynamical partitions allows us, following earlier work of Vul at al., to establish a symbolic dynamics for any point ${z\in S^1}$ and to define a transfer operator whose leading eigenvalue can be used to bound the Lyapunov function. To prove the central limit theorem and its convergence rate we decompose the stochastic sequence via a Taylor expansion in the variables $\xi_i$ into the linear term $L_n^{}(z_0^{})= \xi_n^{}+\sum\limits_{k=1}^{n-1}\xi_k^{}\prod\limits_{j=k}^{n-1} T'(z_j^{})$, ${z_0^{}\in S^1}$ and a higher order term, which is possible in a neighbourhood $A_k^n$ of the points $z_k^{}$, ${k\le n-1}$, not containing the break points of $T^{n}$. For this we construct for a certain sequence $\{n_m^{}\}$ a series of neighbourhoods $A_k^{n_m^{}}$ of the points $z_k^{}$ which do not contain any break point of the map $T^{q_{n_m^{}}^{}}$, $q_{n_m^{}}^{}$ the first return times of $T$. The proof of our results follows from the proof of the central limit theorem for the linearized process.
Keywords: circle map, rotation number, break point, stochastic perturbation, central limit theorem, thermodynamic formalism.
Received: 30.11.2021
Accepted: 05.05.2022
Bibliographic databases:
Document Type: Article
Language: english
Citation: A. Dzhalilov, D. Mayer, A. Aliyev, “The Thermodynamic Formalism and the Central Limit Theorem for Stochastic Perturbations of Circle Maps with a Break”, Rus. J. Nonlin. Dyn., 18:2 (2022), 253–287
Citation in format AMSBIB
\Bibitem{DzhMayAli22}
\by A. Dzhalilov, D. Mayer, A.~Aliyev
\paper The Thermodynamic Formalism and the Central Limit
Theorem for Stochastic Perturbations of Circle Maps
with a Break
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 2
\pages 253--287
\mathnet{http://mi.mathnet.ru/nd792}
\crossref{https://doi.org/10.20537/nd220208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4445320}
Linking options:
  • https://www.mathnet.ru/eng/nd792
  • https://www.mathnet.ru/eng/nd/v18/i2/p253
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :50
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024