|
This article is cited in 2 scientific papers (total in 2 papers)
Nonlinear physics and mechanics
Application of the Kudryashov Method for Finding
Exact Solutions of the Schamel – Kawahara Equation
O. González-Gaxiolaa, A. León-Ramírezb, G. Chacón-Acostaa a Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa,
Vasco de Quiroga 4871, 05348 Mexico City, Mexico
b Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa,
Vasco de Quiroga 4871, 05348 Mexico City, Mexico
Abstract:
Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical
shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called
Schamel – Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel
equation that arises in plasma physics problems, by adding the high-order dispersive terms
from the Kawahara equation. This article presents families of new solutions to the Schamel –
Kawahara model using the Kudryashov method. By performing the symbolic computation,
we show that this method is a valuable and efficient mathematical tool for solving application
problems modeled by nonlinear partial differential equations (NPDE).
Keywords:
Schamel – Kawahara equation, Kudryashov method, exact solutions, nonlinear
PDE.
Received: 03.12.2021 Accepted: 24.02.2022
Citation:
O. González-Gaxiola, A. León-Ramírez, G. Chacón-Acosta, “Application of the Kudryashov Method for Finding
Exact Solutions of the Schamel – Kawahara Equation”, Rus. J. Nonlin. Dyn., 18:2 (2022), 203–215
Linking options:
https://www.mathnet.ru/eng/nd787 https://www.mathnet.ru/eng/nd/v18/i2/p203
|
Statistics & downloads: |
Abstract page: | 101 | Full-text PDF : | 52 | References: | 29 |
|