|
Mathematical problems of nonlinearity
On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors
Y. V. Bakhanova, A. A. Bobrovsky, T. K. Burdygina, S. M. Malykh National Research University “Higher School of Economics”,
ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia
Abstract:
We study spiral chaos in the classical Rössler and Arneodo –Coullet –Tresser systems. Special
attention is paid to the analysis of bifurcation curves that correspond to the appearance of
Shilnikov homoclinic loop of saddle-focus equilibrium states and, as a result, spiral chaos. To
visualize the results, we use numerical methods for constructing charts of the maximal Lyapunov
exponent and bifurcation diagrams obtained using the MatCont package.
Keywords:
Shilnikov bifurcation, spiral chaos, Lyapunov analysis.
Received: 20.05.2021 Accepted: 09.06.2021
Citation:
Y. V. Bakhanova, A. A. Bobrovsky, T. K. Burdygina, S. M. Malykh, “On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors”, Rus. J. Nonlin. Dyn., 17:2 (2021), 157–164
Linking options:
https://www.mathnet.ru/eng/nd747 https://www.mathnet.ru/eng/nd/v17/i2/p157
|
Statistics & downloads: |
Abstract page: | 139 | Full-text PDF : | 99 | References: | 22 |
|