Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2020, Volume 16, Number 4, Pages 625–635
DOI: https://doi.org/10.20537/nd200407
(Mi nd733)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical problems of nonlinearity

A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level

J. G. Damascenoa, J. G. Mirandab, L. G. Perona Araújoc

a Universidade Federal de Ouro Preto, R.Diogo de Vasconcelos, 122, Pilar, 35400-000, Ouro Preto, MG, Brasil
b Departamento de Física, Instituto de Ciências Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brasil
c Universidade Federal de Vicosa — Campus Florestal, Rodovia LMG 818, km 6, 35.690-000, Florestal, MG, Brasil
Full-text PDF (343 kB) Citations (4)
References:
Abstract: In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $E_{L}^{-1}(c)$ (i.e., $c > c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale property in $E_{L}^{-1}(c)$ (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_{L}^{-1}(c)$). The proof requires the use of well-known results from Aubry – Mather theory.
Keywords: Tonelli Lagrangian system, Aubry – Mather theory, static classes.
Received: 08.07.2020
Accepted: 21.10.2020
Bibliographic databases:
Document Type: Article
MSC: 37B40, 37J50, 37J99
Language: Russian
Citation: J. G. Damasceno, J. G. Miranda, L. G. Perona Araújo, “A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level”, Rus. J. Nonlin. Dyn., 16:4 (2020), 625–635
Citation in format AMSBIB
\Bibitem{DamMirPer20}
\by J.~G.~Damasceno, J.~G.~Miranda, L.~G.~Perona Ara\'ujo
\paper A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 4
\pages 625--635
\mathnet{http://mi.mathnet.ru/nd733}
\crossref{https://doi.org/10.20537/nd200407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4198784}
Linking options:
  • https://www.mathnet.ru/eng/nd733
  • https://www.mathnet.ru/eng/nd/v16/i4/p625
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :37
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024