Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2020, Volume 16, Number 1, Pages 181–194
DOI: https://doi.org/10.20537/nd200114
(Mi nd705)
 

Mathematical problems of nonlinearity

Intrinsic Shape Property of Global Attractors in Metrizable Spaces

N. Shekutkovski, M. Shoptrajanov

Ss. Cyril and Methodius University, Arhimedova St. 3, Skopje 1000, R.N.Macedonia
References:
Abstract: This paper concerns the connection between shape theory and attractors for semidynamical systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework to study the global properties which the attractor inherits from the phase space. Namely, following [6] we’ll improve some of the previous results about the shape of global attractors in arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.
Keywords: intrinsic shape, regular covering, continuity over a covering, attractor, proximate net.
Received: 12.07.2019
Accepted: 02.12.2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: N. Shekutkovski, M. Shoptrajanov, “Intrinsic Shape Property of Global Attractors in Metrizable Spaces”, Rus. J. Nonlin. Dyn., 16:1 (2020), 181–194
Citation in format AMSBIB
\Bibitem{SheSho20}
\by N. Shekutkovski, M. Shoptrajanov
\paper Intrinsic Shape Property of Global Attractors in Metrizable Spaces
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 1
\pages 181--194
\mathnet{http://mi.mathnet.ru/nd705}
\crossref{https://doi.org/10.20537/nd200114}
\elib{https://elibrary.ru/item.asp?id=43618869}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084479617}
Linking options:
  • https://www.mathnet.ru/eng/nd705
  • https://www.mathnet.ru/eng/nd/v16/i1/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :66
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024