Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2020, Volume 16, Number 1, Pages 133–159
DOI: https://doi.org/10.20537/nd200111
(Mi nd702)
 

Nonlinear physics and mechanics

The Extended Rigid Body and the Pendulum Revisited

M. de la Cruz, N. Gaspar, R. Linares

Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa San Rafael Atlixco 186, 09340, México City, México
References:
Abstract: In this paper we revisit the construction by which the $SL(2,\mathbb{R})$ symmetry of the Euler equations allows a simple pendulum to be obtained from a rigid body. We begin by reviewing the original relation found by Holm and Marsden in which, starting from the two integrals of motion of the extended rigid body with Lie algebra $\mathfrak{iso}(2)$ and introducing a proper momentum map, it is possible to obtain both the Hamiltonian and the equations of motion of the pendulum. Important in this construction is the fact that both integrals of motion have the geometry of an elliptic cylinder. By considering the whole $SL(2,\mathbb{R})$ symmetry group, in this contribution we give all possible combinations of the integrals of motion and the corresponding momentum maps that produce the simple pendulum, showing that this system can also appear when the geometry of one of the integrals of motion is given by a hyperbolic cylinder and the other by an elliptic cylinder. As a result, we show that, from the extended rigid body with Lie algebra $\mathfrak{iso}(1,1)$, it is possible to obtain the pendulum, but only in circulating movement. Finally, as a byproduct of our analysis we provide the momentum maps that give origin to the pendulum with an imaginary time. Our discussion covers both the algebraic and the geometric point of view.
Keywords: free motion of a rigid body, simple pendulum, bi-Hamiltonian structures, momentum maps, symplectic reduction.
Funding agency Grant number
CONACYT - Consejo Nacional de Ciencia y Tecnología 237351
The work of M de la C and NG is supported by the Ph.D. scholarship program of the Universidad Autґonoma Metropolitana. The work of RL is partially supported from CONACyT Grant No. 237351.
Received: 11.12.2019
Accepted: 20.03.2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. de la Cruz, N. Gaspar, R. Linares, “The Extended Rigid Body and the Pendulum Revisited”, Rus. J. Nonlin. Dyn., 16:1 (2020), 133–159
Citation in format AMSBIB
\Bibitem{De GasLin20}
\by M.~de la Cruz, N.~Gaspar, R.~Linares
\paper The Extended Rigid Body and the Pendulum Revisited
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 1
\pages 133--159
\mathnet{http://mi.mathnet.ru/nd702}
\crossref{https://doi.org/10.20537/nd200111}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084448542}
Linking options:
  • https://www.mathnet.ru/eng/nd702
  • https://www.mathnet.ru/eng/nd/v16/i1/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :150
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024