Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2019, Volume 15, Number 3, Pages 309–326
DOI: https://doi.org/10.20537/nd190309
(Mi nd662)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical problems of nonlinearity

Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom

S. D. Grilloa, L. M. Salomoneb, M. Zuccallib

a Instituto Balseiro, UNCuyo-CNEA, av. Bustillo 9500, San Carlos de Bariloche, Río Negro, República Argentina
b CMaLP, Fac. de Ciencias Exactas, UNLP, 50 y 115, La Plata, Buenos Aires, República Argentina
Full-text PDF (288 kB) Citations (1)
References:
Abstract: For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that the above-mentioned condition is not only sufficient, but also necessary. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
Keywords: underactuated systems, Hamiltonian systems, asymptotic stability, Lyapunov functions.
Funding agency Grant number
Consejo Nacional de Investigaciones Cientificas y Tecnicas
S. D. Grillo and L.M. Salomone thank CONICET for its financial support.
Received: 30.04.2019
Accepted: 12.09.2019
Bibliographic databases:
Document Type: Article
MSC: 93D05, 93D20, 93C10
Language: Russian
Citation: S. D. Grillo, L. M. Salomone, M. Zuccalli, “Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom”, Rus. J. Nonlin. Dyn., 15:3 (2019), 309–326
Citation in format AMSBIB
\Bibitem{GriSalZuc19}
\by S.~D.~Grillo, L.~M.~Salomone, M.~Zuccalli
\paper Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 3
\pages 309--326
\mathnet{http://mi.mathnet.ru/nd662}
\crossref{https://doi.org/10.20537/nd190309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4021372}
Linking options:
  • https://www.mathnet.ru/eng/nd662
  • https://www.mathnet.ru/eng/nd/v15/i3/p309
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :36
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024