Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2018, Volume 14, Number 4, Pages 553–577
DOI: https://doi.org/10.20537/nd180409
(Mi nd631)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical problems of nonlinearity

An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks

A. Dzhalilova, D. Mayerb, S. Djalilovc, A. Aliyevd

a Turin Polytechnic University, Kichik Halka yuli 17, Tashkent, 100095 Uzbekistan
b Institut für Theoretische Physik, TU Clausthal, D-38678 Clausthal-Zellerfeld, Germany
c Samarkand Institute of Economics and Service, A. Temura st. 9, Samarkand, 140100 Uzbekistan
d National University of Uzbekistan, VUZ Gorodok, Tashkent, 700174 Uzbekistan
Full-text PDF (383 kB) Citations (2)
References:
Abstract: M. Herman showed that the invariant measure $\mu_h$ of a piecewise linear (PL) circle homeomorphism $h$ with two break points and an irrational rotation number $\rho_{h}$ is absolutely continuous iff the two break points belong to the same orbit. We extend Herman's result to the class P of piecewise $ C^{2+\varepsilon} $-circle maps $f$ with an irrational rotation number $\rho_f$ and two break points $ a_{0}, c_{0}$, which do not lie on the same orbit and whose total jump ratio is $\sigma_f=1$, as follows: if $\mu_f$ denotes the invariant measure of the $P$-homeomorphism $f$, then for Lebesgue almost all values of $\mu_f([a_0, c_{0}])$ the measure $\mu_f$ is singular with respect to Lebesgue measure.
Keywords: piecewise-smooth circle homeomorphism, break point, rotation number, invariant measure.
Received: 10.09.2018
Accepted: 19.11.2018
Bibliographic databases:
Document Type: Article
MSC: 37E10, 37C15, 37C40
Language: English
Citation: A. Dzhalilov, D. Mayer, S. Djalilov, A. Aliyev, “An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks”, Nelin. Dinam., 14:4 (2018), 553–577
Citation in format AMSBIB
\Bibitem{DzhMayDja18}
\by A. Dzhalilov, D. Mayer, S. Djalilov, A. Aliyev
\paper An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks
\jour Nelin. Dinam.
\yr 2018
\vol 14
\issue 4
\pages 553--577
\mathnet{http://mi.mathnet.ru/nd631}
\crossref{https://doi.org/10.20537/nd180409}
\elib{https://elibrary.ru/item.asp?id=36686074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061742410}
Linking options:
  • https://www.mathnet.ru/eng/nd631
  • https://www.mathnet.ru/eng/nd/v14/i4/p553
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Íåëèíåéíàÿ äèíàìèêà
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :70
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024