Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2017, Volume 13, Number 2, Pages 257–275
DOI: https://doi.org/10.20537/nd1702008
(Mi nd564)
 

This article is cited in 7 scientific papers (total in 7 papers)

Translated papers

Autonomous strange non-chaotic oscillations in a system of mechanical rotators

A. Yu. Jalninea, S. P. Kuznetsovb

a Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, ul. Zelenaya 38, Saratov, 410019, Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russia
Full-text PDF (899 kB) Citations (7)
References:
Abstract: We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to “2” and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.
Keywords: autonomous dynamical system, mechanical rotators, quasi-periodic oscillations, strange nonchaotic attractor, chaos.
Funding agency Grant number
Russian Science Foundation 15-12-20035
Russian Foundation for Basic Research 16-02-00135
Received: 31.03.2017
Accepted: 18.04.2017
English version:
Regular and Chaotic Dynamics, 2017, Volume 22, Issue 3, Pages 210–225
DOI: https://doi.org/10.1134/S1560354717030029
Bibliographic databases:
Document Type: Article
UDC: 517.9, 531.36
Language: Russian
Citation: A. Yu. Jalnine, S. P. Kuznetsov, “Autonomous strange non-chaotic oscillations in a system of mechanical rotators”, Nelin. Dinam., 13:2 (2017), 257–275; Regular and Chaotic Dynamics, 22:3 (2017), 210–225
Citation in format AMSBIB
\Bibitem{JalKuz17}
\by A.~Yu.~Jalnine, S.~P.~Kuznetsov
\paper Autonomous strange non-chaotic oscillations in a system of mechanical rotators
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 2
\pages 257--275
\mathnet{http://mi.mathnet.ru/nd564}
\crossref{https://doi.org/10.20537/nd1702008}
\elib{https://elibrary.ru/item.asp?id=29443381}
\transl
\jour Regular and Chaotic Dynamics
\yr 2017
\vol 22
\issue 3
\pages 210--225
\crossref{https://doi.org/10.1134/S1560354717030029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020173459}
Linking options:
  • https://www.mathnet.ru/eng/nd564
  • https://www.mathnet.ru/eng/nd/v13/i2/p257
  • This publication is cited in the following 7 articles:
    1. Run Liu, Celso Grebogi, Yuan Yue, “Double grazing bifurcation route in a quasiperiodically driven piecewise linear oscillator”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)  crossref
    2. Qiong Yang, Denghui Li, Yandong Chu, Xianfeng Li, Celso Grebogi, “Existence and Generation Mechanisms of Strange Nonchaotic Attractors in Axially Accelerating Beam Systems”, Int. J. Bifurcation Chaos, 32:14 (2022)  crossref
    3. GAOLEI LI, YUAN YUE, CELSO GREBOGI, DENGHUI LI, JIANHUA XIE, “STRANGE NONCHAOTIC ATTRACTORS AND MULTISTABILITY IN A TWO-DEGREE-OF-FREEDOM QUASIPERIODICALLY FORCED VIBRO-IMPACT SYSTEM”, Fractals, 29:04 (2021), 2150103  crossref
    4. Gaolei Li, Yuan Yue, Denghui Li, Jianhua Xie, Celso Grebogi, “The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:5 (2020)  crossref
    5. P. Megavarna Ezhilarasu, K. Suresh, K. Thamilmaran, “Observation of Strange Nonchaotic Dynamics in the Frame of State-Controlled Cellular Neural Network-Based Oscillator”, Journal of Computational and Nonlinear Dynamics, 14:11 (2019)  crossref
    6. Gaolei Li, Yuan Yue, Jianhua Xie, Celso Grebogi, “Strange nonchaotic attractors in a nonsmooth dynamical system”, Communications in Nonlinear Science and Numerical Simulation, 78 (2019), 104858  crossref
    7. Licai Liu, Chuanhong Du, Xiefu Zhang, Jian Li, Shuaishuai Shi, “Adaptive Synchronization Strategy between Two Autonomous Dissipative Chaotic Systems Using Fractional-Order Mittag–Leffler Stability”, Entropy, 21:4 (2019), 383  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :117
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025