Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2010, Volume 6, Number 1, Pages 23–52 (Mi nd54)  

This article is cited in 2 scientific papers (total in 2 papers)

Qualitative methods for case study of the Hindmarch–Rose model

M. Kolomietsa, A. Shilnikovb

a Agricultural Academy
b Department of Mathematics and Statistics, Neuroscience Institute, Georgia State University
References:
Abstract: We demonstrate that bifurcations of periodic orbits underlie the dynamics of the Hindmarsh–Rose model and other square-wave bursting models of neurons of the Hodgkin–Huxley type. Such global bifurcations explain in-depth the transitions between the tonic spiking and bursting oscillations in a model. We show that a modified Hindmarsh–Rose model can exhibit the blue sky bifurcation, and a bistability of the coexisting tonic spiking and bursting activities.
Keywords: Hindmarsh–Rose model, neuron, dynamics, bifurcations, blue sky catastrophe, bistability, tonic spiking, bursting.
Received: 06.12.2009
Bibliographic databases:
Document Type: Article
UDC: 519.6-519.9, 530.1
MSC: 37B55, 37N25, 37Fxx
Language: Russian
Citation: M. Kolomiets, A. Shilnikov, “Qualitative methods for case study of the Hindmarch–Rose model”, Nelin. Dinam., 6:1 (2010), 23–52
Citation in format AMSBIB
\Bibitem{KolShi10}
\by M.~Kolomiets, A.~Shilnikov
\paper Qualitative methods for case study of the Hindmarch--Rose model
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 1
\pages 23--52
\mathnet{http://mi.mathnet.ru/nd54}
\elib{https://elibrary.ru/item.asp?id=13411456}
Linking options:
  • https://www.mathnet.ru/eng/nd54
  • https://www.mathnet.ru/eng/nd/v6/i1/p23
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:530
    Full-text PDF :378
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024