Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 4, Pages 553–565
DOI: https://doi.org/10.20537/nd1604001
(Mi nd537)
 

This article is cited in 7 scientific papers (total in 7 papers)

Original papers

Two-cycles of the Ricker model with the periodic Malthusian parameter: stability and multistability

K. V. Shlufmana, G. P. Neverovab, E. Ya. Frismana

a Institute for Complex Analysis of Regional Problems, Far Eastern Branch of RAS, ul. Sholom-Aleikhem 4, Birobidzhan, 679016, Russia
b Institute of Automation and Control Processes, Far Eastern Branch of RAS, ul. Radio 5, Vladivostok, 690041, Russia
Full-text PDF (317 kB) Citations (7)
References:
Abstract: This paper investigates the emergence and stability of 2-cycles for the Ricker model with the 2-year periodic Malthusian parameter. It is shown that the stability loss of the trivial solution occurs through the transcritical bifurcation resulting in a stable 2-cycle. The subsequent tangent bifurcation leads to the appearance of two new 2-cycles: stable and unstable ones. As a result, there is multistability. It is shown that the coexistence of two different stable 2-cycles is possible in a narrow area of the parameter space. Further stability loss of the 2-cycles occurs according to the Feigenbaum scenario.
Keywords: recurrence equation, Ricker model, periodic Malthusian parameter, stability, bifurcation, multistability.
Funding agency Grant number
Russian Foundation for Basic Research 15-29-02658 офи_м
Received: 07.06.2016
Accepted: 22.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 37G35
Language: Russian
Citation: K. V. Shlufman, G. P. Neverova, E. Ya. Frisman, “Two-cycles of the Ricker model with the periodic Malthusian parameter: stability and multistability”, Nelin. Dinam., 12:4 (2016), 553–565
Citation in format AMSBIB
\Bibitem{ShlNevFri16}
\by K.~V.~Shlufman, G.~P.~Neverova, E.~Ya.~Frisman
\paper Two-cycles of the Ricker model with the periodic Malthusian parameter: stability and multistability
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 4
\pages 553--565
\mathnet{http://mi.mathnet.ru/nd537}
\crossref{https://doi.org/10.20537/nd1604001}
\elib{https://elibrary.ru/item.asp?id=27715762}
Linking options:
  • https://www.mathnet.ru/eng/nd537
  • https://www.mathnet.ru/eng/nd/v12/i4/p553
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :152
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024