Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 2, Pages 223–234 (Mi nd523)  

This article is cited in 3 scientific papers (total in 3 papers)

Original papers

Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics

A. P. Kuznetsovab, S. P. Kuznetsovbac, Yu. V. Sedovaa

a Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
b Saratov State University, ul. Astrahanskaya 83, Saratov, 410012 Russia
c Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
References:
Abstract: Examples of mechanical systems are discussed, where quasi-periodic motions may occur, caused by an irrational ratio of the radii of rotating elements that constitute the system. For the pendulum system with frictional transmission of rotation between the elements, in the conservative and dissipative cases we note the coexistence of an infinite number of stable fixed points, and in the case of the self-oscillating system the presence of many attractors in the form of limit cycles and of quasi-periodic rotational modes is observed. In the case of quasi-periodic dynamics the frequencies of spectral components depend on the parameters, but the ratio of basic incommensurate frequencies remains constant and is determined by the irrational number characterizing the relative size of the elements.
Keywords: dynamic system, mechanical transmission, quasi-periodic oscillations, attractor.
Funding agency Grant number
Russian Science Foundation 15-12-20035
Russian Foundation for Basic Research 14-02-00085
Received: 13.05.2016
Revised: 24.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9:531.36
Language: Russian
Citation: A. P. Kuznetsov, S. P. Kuznetsov, Yu. V. Sedova, “Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics”, Nelin. Dinam., 12:2 (2016), 223–234
Citation in format AMSBIB
\Bibitem{KuzKuzSed16}
\by A.~P.~Kuznetsov, S.~P.~Kuznetsov, Yu.~V.~Sedova
\paper Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 2
\pages 223--234
\mathnet{http://mi.mathnet.ru/nd523}
\elib{https://elibrary.ru/item.asp?id=26193559}
Linking options:
  • https://www.mathnet.ru/eng/nd523
  • https://www.mathnet.ru/eng/nd/v12/i2/p223
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024