Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 1, Pages 121–143 (Mi nd516)  

This article is cited in 9 scientific papers (total in 9 papers)

Translated papers

Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

S. P. Kuznetsovab

a Kotel’nikov’s Institute of Radio Engineering and Electronics of RAS, Saratov Branch, 410019 Saratov, Zelenaya 38, Russian Federation
b Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
References:
Abstract: Dynamical equations are formulated and a numerical study is provided for selfoscillatory model systems based on the triple linkage hinge mechanism of Thurston–Weeks–Hunt–MacKay. We consider systems with a holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.
Keywords: dynamical system, chaos, hyperbolic attractor, Anosov dynamics, rotator, Lyapunov exponent, self-oscillator.
Funding agency Grant number
Russian Science Foundation 15-12-20035
Received: 28.09.2015
Revised: 30.10.2015
English version:
Regular and Chaotic Dynamics, 2015, Volume 20, Issue 6, Pages 649–666
DOI: https://doi.org/10.1134/S1560354715060027
Bibliographic databases:
Document Type: Article
UDC: 51-72, 514.85, 517.9, 534.1
Language: Russian
Citation: S. P. Kuznetsov, “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories”, Nelin. Dinam., 12:1 (2016), 121–143; Regular and Chaotic Dynamics, 20:6 (2015), 649–666
Citation in format AMSBIB
\Bibitem{Kuz16}
\by S.~P.~Kuznetsov
\paper Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 1
\pages 121--143
\mathnet{http://mi.mathnet.ru/nd516}
\transl
\jour Regular and Chaotic Dynamics
\yr 2015
\vol 20
\issue 6
\pages 649--666
\crossref{https://doi.org/10.1134/S1560354715060027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948967074}
Linking options:
  • https://www.mathnet.ru/eng/nd516
  • https://www.mathnet.ru/eng/nd/v12/i1/p121
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Íåëèíåéíàÿ äèíàìèêà
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :158
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024