Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 1, Pages 3–15 (Mi nd509)  

This article is cited in 2 scientific papers (total in 2 papers)

Original papers

On some properties of an $\exp(iz)$ map

I. V. Matyushkin

Molecular Electronics Research Institute, Zapadnyj 1st valley, 12, building 1, Zelenograd, Moscow, 124460, Russia
References:
Abstract: The properties of an $e^{iz}$ map are studied. It is proved that the map has one stable and an infinite number of unstable equilibrium positions. There are an infinite number of repellent twoperiodic cycles. The nonexistence of wandering points is heuristically shown by using MATLAB. The definition of helicity points is given. As for other hyperbolic maps, Cantor bouquets are visualized for the Julia and Mandelbrot sets.
Keywords: holomorphic dynamics, fractal, Cantor bouquet, hyperbolic map.
Received: 24.03.2015
Revised: 16.01.2016
Document Type: Article
UDC: 517.542
MSC: 30C20
Language: Russian
Citation: I. V. Matyushkin, “On some properties of an $\exp(iz)$ map”, Nelin. Dinam., 12:1 (2016), 3–15
Citation in format AMSBIB
\Bibitem{Mat16}
\by I.~V.~Matyushkin
\paper On some properties of an $\exp(iz)$ map
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/nd509}
Linking options:
  • https://www.mathnet.ru/eng/nd509
  • https://www.mathnet.ru/eng/nd/v12/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :140
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024