Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2015, Volume 11, Number 2, Pages 279–286 (Mi nd480)  

This article is cited in 7 scientific papers (total in 7 papers)

Original papers

The Hamilton – Jacobi method for non-Hamiltonian systems

V. V. Vedenyapin, N. N. Fimin

Keldysh Institute of Applied Mathematics Miusskaya sq. 4, Moscow, 125047, Russia
Full-text PDF (322 kB) Citations (7)
References:
Abstract: The hydrodynamic substitution applied earlier only in the theory of plasma represents the decomposition of a special type of the distribution function in phase space which is marking out obviously dependence of a momentum variable on a configuration variable and time. For the system of the autonomous ordinary differential equations (ODE) given to a Hamilton form, evolution of this dynamic system is described by the classical Liouville equation for the distribution function defined on the cotangent bundle of configuration manifold. Liouville’s equation is given to the reduced Euler’s system representing pair of uncoupled hydrodynamic equations (continuity and momenta transfer). The equation for momenta by simple transformations can bebrought to the classicalequation of Hamilton – Jacobi foreikonal function. For the general systemautonomous ODE it is possibleto enter the decomposition of configuration variables into new configuration and «momenta» variables. In constructed thus phase (generally speaking, asymmetrical) space it is possible to consider the generalized Liouville’s equation, to lead it again to the pair of the hydrodynamic equations. The equation of transfer of «momenta» is an analog of the Hamilton – Jacobi equation for the general non-Hamilton case.
Keywords: hydrodynamical substitution, Liouville equation, Hamilton – Jacobi method, non-Hamiltonian system.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00670
14-29-06086
Received: 27.11.2014
Revised: 24.02.2015
Document Type: Article
UDC: 517.9
MSC: 34A25
Language: Russian
Citation: V. V. Vedenyapin, N. N. Fimin, “The Hamilton – Jacobi method for non-Hamiltonian systems”, Nelin. Dinam., 11:2 (2015), 279–286
Citation in format AMSBIB
\Bibitem{VedFim15}
\by V.~V.~Vedenyapin, N.~N.~Fimin
\paper The Hamilton\,--\,Jacobi method for non-Hamiltonian systems
\jour Nelin. Dinam.
\yr 2015
\vol 11
\issue 2
\pages 279--286
\mathnet{http://mi.mathnet.ru/nd480}
Linking options:
  • https://www.mathnet.ru/eng/nd480
  • https://www.mathnet.ru/eng/nd/v11/i2/p279
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Íåëèíåéíàÿ äèíàìèêà
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :267
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024