Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2015, Volume 11, Number 1, Pages 117–126 (Mi nd468)  

This article is cited in 1 scientific paper (total in 1 paper)

On the investigation of stability of equilibrium in Sitnikov problem in nonlinear formulation

Vyacheslav O. Kalas, Pavel S. Krasilnikov

Moscow Aviation Institute (National Research University), Volokolamskoe Shosse, 4, GSP-3, A-80, Moscow, 125993, Russia
Full-text PDF (335 kB) Citations (1)
References:
Abstract: With regard to nonlinear terms in the equations of motion, the stability of the trivial equilibrium in Sitnikov problem is investigated. For Hamilton's equations of the problem, the mapping of phase space into itself in the time $t=2\pi $ was constructed up to terms of third order. With the help of point mapping method, the stability of equilibrium is investigated for eccentricity from the interval $[0,1)$. It is shown that Lyapunov stability takes place for $e\in [0,1)$, if we exclude the discrete sequence of values $\{ e_{j} \} $ for which the trace of the monodromy matrix is equal to $\pm 2$. The first and second values of the eccentricity of the specified sequence are investigated. The equilibrium is stable if $e=e_{1} $. Eccentricity value $e=e_{2} $ corresponds to degeneracy stability theorems, therefore the stability analysis requires the consideration of the terms of order higher than the third. The remaining values of eccentricity from discrete sequence have not been studied.
Keywords: Sitnikov problem, stability, point mappings.
Funding agency Grant number
Russian Science Foundation 14-21-00068
Received: 11.10.2014
Revised: 26.12.2014
Bibliographic databases:
Document Type: Article
UDC: 521.1, 521.2, 521.3
MSC: 70F07, 34D20
Language: Russian
Citation: Vyacheslav O. Kalas, Pavel S. Krasilnikov, “On the investigation of stability of equilibrium in Sitnikov problem in nonlinear formulation”, Nelin. Dinam., 11:1 (2015), 117–126
Citation in format AMSBIB
\Bibitem{KalKra15}
\by Vyacheslav~O.~Kalas, Pavel~S.~Krasilnikov
\paper On the investigation of stability of equilibrium in Sitnikov problem in~nonlinear formulation
\jour Nelin. Dinam.
\yr 2015
\vol 11
\issue 1
\pages 117--126
\mathnet{http://mi.mathnet.ru/nd468}
\elib{https://elibrary.ru/item.asp?id=23051492}
Linking options:
  • https://www.mathnet.ru/eng/nd468
  • https://www.mathnet.ru/eng/nd/v11/i1/p117
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :173
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024