Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2014, Volume 10, Number 4, Pages 465–472 (Mi nd457)  

This article is cited in 11 scientific papers (total in 11 papers)

Examples of topological approach to the problem of inverted pendulum with moving pivot point

Ivan Yu. Polekhin

Lomonosov Moscow State University, GSP-1, Leninskie Gory 1, Moscow, 119991, Russia
References:
Abstract: Two examples concerning application of topology in study of dynamics of inverted plain mathematical pendulum with pivot point moving along horizontal straight line are considered. The first example is an application of the Ważewski principle to the problem of existence of solution without falling. The second example is a proof of existence of periodic solution in the same system when law of motion is periodic as well. Moreover, in the second case it is also shown that along obtained periodic solution pendulum never becomes horizontal (falls).
Keywords: inverted pendulum, Lefschetz–Hopf theorem, Ważewski principle, periodic solution.
Received: 13.09.2014
Revised: 19.11.2014
Bibliographic databases:
Document Type: Article
UDC: 51-72
MSC: 70K40, 70G40, 37B55
Language: Russian
Citation: Ivan Yu. Polekhin, “Examples of topological approach to the problem of inverted pendulum with moving pivot point”, Nelin. Dinam., 10:4 (2014), 465–472
Citation in format AMSBIB
\Bibitem{Pol14}
\by Ivan~Yu.~Polekhin
\paper Examples of topological approach to the problem of inverted pendulum with moving pivot point
\jour Nelin. Dinam.
\yr 2014
\vol 10
\issue 4
\pages 465--472
\mathnet{http://mi.mathnet.ru/nd457}
\zmath{https://zbmath.org/?q=an:06430346}
Linking options:
  • https://www.mathnet.ru/eng/nd457
  • https://www.mathnet.ru/eng/nd/v10/i4/p465
  • This publication is cited in the following 11 articles:
    1. D. D. Kulminskiy, M. V. Malyshev, “Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point”, Rus. J. Nonlin. Dyn., 20:4 (2024), 553–563  mathnet  crossref
    2. I. Yu. Polekhin, “The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum”, Theoret. and Math. Phys., 211:2 (2022), 692–700  mathnet  crossref  crossref  mathscinet  adsnasa
    3. Polekhin I., “On the Application of the Wazewski Method to the Problem of Global Stabilization”, Syst. Control Lett., 153 (2021), 104953  crossref  mathscinet  zmath  isi  scopus
    4. I. Yu. Polekhin, “Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces”, Rus. J. Nonlin. Dyn., 16:2 (2020), 343–353  mathnet  crossref  mathscinet
    5. Ivan Yu. Polekhin, “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410  mathnet  crossref  mathscinet
    6. Ivan Yu. Polekhin, “Some Results on the Existence of Forced Oscillations in Mechanical Systems”, Proc. Steklov Inst. Math., 310 (2020), 250–261  mathnet  crossref  crossref  isi  elib
    7. N. A. Stepanov, M. A. Skvortsov, “Lyapunov exponent for Whitney's problem with random drive”, JETP Letters, 112:6 (2020), 376–382  mathnet  crossref  crossref  isi  elib
    8. R. Srzednicki, “On periodic solutions in the Whitney's inverted pendulum problem”, Discret. Contin. Dyn. Syst.-Ser. S, 12:7 (2019), 2127–2141  crossref  mathscinet  zmath  isi  scopus
    9. I. Polekhin, “On motions without falling of an inverted pendulum with dry friction”, J. Geom. Mech., 10:4 (2018), 411–417  crossref  mathscinet  zmath  isi  scopus
    10. I. Polekhin, “On topological obstructions to global stabilization of an inverted pendulum”, Syst. Control Lett., 113 (2018), 31–35  crossref  mathscinet  zmath  isi  scopus
    11. S. V. Bolotin, V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :239
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025