Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2014, Volume 10, Number 2, Pages 157–176 (Mi nd433)  

Self-oscillations in implicit singularly perturbed dynamical systems on the plane

Vladimir V. Gotsulenko

National Academy of Sciences of Ukraine Institute of Engineering Thermophysics, 2a Zhelyabov, Kiev, 03680, Ukraine
References:
Abstract: To implicitly singularly perturbed autonomous systems of ordinary differential equations of second order found some sufficient conditions for the existence of periodic solutions of relaxation (self-oscillation), determined by means of an auxiliary dynamical system that implements a sliding mode. It is shown that so defined periodic motions have typical properties of self-oscillations of relaxation defined autonomous systems of ordinary differential equations with a small parameter at the highest derivative.
Keywords: implicitly singularly perturbed system, sliding mode, the relaxation periodic solution, self-oscillations.
Received: 29.01.2014
Revised: 04.03.2014
Document Type: Article
UDC: 530.182
MSC: 39A23, 39A33
Language: Russian
Citation: Vladimir V. Gotsulenko, “Self-oscillations in implicit singularly perturbed dynamical systems on the plane”, Nelin. Dinam., 10:2 (2014), 157–176
Citation in format AMSBIB
\Bibitem{Got14}
\by Vladimir~V.~Gotsulenko
\paper Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
\jour Nelin. Dinam.
\yr 2014
\vol 10
\issue 2
\pages 157--176
\mathnet{http://mi.mathnet.ru/nd433}
Linking options:
  • https://www.mathnet.ru/eng/nd433
  • https://www.mathnet.ru/eng/nd/v10/i2/p157
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :110
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024