Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2014, Volume 10, Number 2, Pages 149–156 (Mi nd432)  

Poincaré recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator

Nadezhda I. Semenova, Vadim S. Anishchenko

International Research Institute of Nonlinear Dynamics Saratov State University, Astrakhanskaya 83, Saratov, 410026, Russia
References:
Abstract: In the present work we analyze the statistics of a set that is obtained by calculating a stroboscopic section of phase trajectories in a harmonically driven van der Pol oscillator. It is shown that this set is similar to a linear shift on a circle with an irrational rotation number, which is defined as the detuning between the external and natural frequencies. The dependence of minimal return times on the size $\varepsilon$ of the return interval is studied experimentally for the golden ratio. Furthermore, it is also found that in this case, the value of the Afraimovich–Pesin dimension is $\alpha_c=1$.
Keywords: Poincaré recurrence, Afraimovich–Pesin dimension, Fibonacci stairs, circle map, van der Pol oscillator.
Received: 18.04.2014
Revised: 15.05.2014
Document Type: Article
UDC: 530.182
MSC: 37B20
Language: Russian
Citation: Nadezhda I. Semenova, Vadim S. Anishchenko, “Poincaré recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator”, Nelin. Dinam., 10:2 (2014), 149–156
Citation in format AMSBIB
\Bibitem{SemAni14}
\by Nadezhda~I.~Semenova, Vadim~S.~Anishchenko
\paper Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator
\jour Nelin. Dinam.
\yr 2014
\vol 10
\issue 2
\pages 149--156
\mathnet{http://mi.mathnet.ru/nd432}
Linking options:
  • https://www.mathnet.ru/eng/nd432
  • https://www.mathnet.ru/eng/nd/v10/i2/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :85
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024