Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2013, Volume 9, Number 4, Pages 721–754 (Mi nd417)  

This article is cited in 8 scientific papers (total in 8 papers)

The problem of drift and recurrence for the rolling Chaplygin ball

Alexey V. Borisovabcd, Alexander A. Kilinbcda, Ivan S. Mamaevdbca

a A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
b Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
c Laboratory of nonlinear analysis and the design of new types of vehicles, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
d Institute of Computer Science
Full-text PDF (833 kB) Citations (8)
References:
Abstract: We investigate the motion of the point of contact (absolute dynamics) in the integrable problem of the Chaplygin ball rolling on a plane. Although the velocity of the point of contact is a given vector function of variables of a reduced system, it is impossible to apply standard methods of the theory of integrable Hamiltonian systems due to the absence of an appropriate conformally Hamiltonian representation for an unreduced system. For a complete analysis we apply the standard analytical approach, due to Bohl and Weyl, and develop topological methods of investigation. In this way we obtain conditions for boundedness and unboundedness of the trajectories of the contact point.
Keywords: nonholonomic constraint, absolute dynamics, bifurcation diagram, bifurcation complex, drift, resonance, invariant torus.
Received: 04.10.2013
Revised: 02.12.2013
Document Type: Article
UDC: 531.8, 517.925
MSC: 37J60, 37J35, 70E18
Language: Russian
Citation: Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “The problem of drift and recurrence for the rolling Chaplygin ball”, Nelin. Dinam., 9:4 (2013), 721–754
Citation in format AMSBIB
\Bibitem{BorKilMam13}
\by Alexey~V.~Borisov, Alexander~A.~Kilin, Ivan~S.~Mamaev
\paper The problem of drift and recurrence for the rolling Chaplygin ball
\jour Nelin. Dinam.
\yr 2013
\vol 9
\issue 4
\pages 721--754
\mathnet{http://mi.mathnet.ru/nd417}
Linking options:
  • https://www.mathnet.ru/eng/nd417
  • https://www.mathnet.ru/eng/nd/v9/i4/p721
  • This publication is cited in the following 8 articles:
    1. E. A. Mikishanina, “Upravlenie kacheniem dinamicheski simmetrichnogo shara po naklonnoi vraschayuscheisya ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:3 (2024), 402–414  mathnet  crossref  mathscinet
    2. E. A. Mikishanina, “Negolonomnye mekhanicheskie sistemy na ploskosti s peremennym uglom naklona”, Zhurnal SVMO, 25:4 (2023), 326–341  mathnet  crossref  mathscinet
    3. I. R. Sataev, A. O. Kazakov, “Stsenarii perekhoda k khaosu v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 12:2 (2016), 235–250  mathnet  elib
    4. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. A. Kilin, E. V. Vetchanin, “Upravlenie dvizheniem tverdogo tela v zhidkosti s pomoschyu dvukh podvizhnykh mass”, Nelineinaya dinam., 11:4 (2015), 633–645  mathnet
    6. A. A. Kilin, Yu. L. Karavaev, “Eksperimentalnye issledovaniya dinamiki sfericheskogo robota kombinirovannogo tipa”, Nelineinaya dinam., 11:4 (2015), 721–734  mathnet
    7. A. V. Borisov, I. S. Mamaev, “Simmetrii i reduktsiya v negolonomnoi mekhanike”, Nelineinaya dinam., 11:4 (2015), 763–823  mathnet
    8. A. V. Borisov, A. O. Kazakov, I. R. Sataev, “Regulyarnye i khaoticheskie attraktory v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 10:3 (2014), 361–380  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :105
    References:103
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025