Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2013, Volume 9, Number 2, Pages 229–245 (Mi nd387)  

This article is cited in 5 scientific papers (total in 5 papers)

The Euler–Jacobi–Lie integrability theorem

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (378 kB) Citations (5)
References:
Abstract: This paper addresses a class of problems associated with the conditions for exact integrability of a system of ordinary differential equations expressed in terms of the properties of tensor invariants. The general theorem of integrability of the system of $n$ differential equations is proved, which admits $n-2$ independent symmetry fields and an invariant volume $n$-form (integral invariant). General results are applied to the study of steady motions of a continuous medium with infinite conductivity.
Keywords: symmetry field, integral invariant, nilpotent group, magnetic hydrodynamics.
Received: 05.07.2012
Revised: 30.08.2012
Document Type: Article
UDC: 517.9
MSC: 34C14
Language: Russian
Citation: Valery V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Nelin. Dinam., 9:2 (2013), 229–245
Citation in format AMSBIB
\Bibitem{Koz13}
\by Valery~V.~Kozlov
\paper The Euler--Jacobi--Lie integrability theorem
\jour Nelin. Dinam.
\yr 2013
\vol 9
\issue 2
\pages 229--245
\mathnet{http://mi.mathnet.ru/nd387}
Linking options:
  • https://www.mathnet.ru/eng/nd387
  • https://www.mathnet.ru/eng/nd/v9/i2/p229
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024